首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
提出了一种飞秒刻写光纤法布里-珀罗(F-P)腔级联切趾布拉格光纤光栅(FBG)的微结构传感器并研究了该传感器的温度与应变传感特性。该微结构传感器光谱稳定性良好,监测时长2 h内FBG波长最大漂移量为0.009 nm,功率最大漂移量为0.015 d B,F-P腔波长最大漂移量为0.018 nm,功率最大漂移量为0.072 d B。当应变由0με增至450με再减回0με时,该微传感器FBG特征峰先右移再左移,波长变化0.530 4 nm,应变灵敏度约1.17 pm/με,线性度高于0.99;光纤F-P腔特征谷波长变化0.491 1 nm,应变灵敏度约1.10 pm/με,线性度高于0.90。当温度由50℃升至200℃再降回50℃时,FBG特征峰先右移再左移,波长变化约1.418 nm,应变灵敏度约10.09 pm/℃,线性度高于0.95;光纤F-P腔特征谷波长变化约1.578 nm,应变灵敏度约10.53 pm/℃,线性度高于0.98。所提出的微结构传感器是解决单根光纤双参数测量的有效手段,同时对复杂环境下的多参数耦合测量与解耦也具有重要的参考价值。  相似文献   

2.
提出了一种基于铽镝铁(TbDyFe)的具有温度补偿的拱形增敏微纳光纤磁场传感器。传感器由光纤布拉格光栅(FBG),拱形微纳光纤和TbDyFe组成,拱形微纳光纤通过紫外胶(UV glue)粘接在TbDyFe上。与非拱形微纳光纤相比,拱形光纤可将TbDyFe的伸长转化为光纤曲率半径的变化,引起干涉波长偏移,从而实现磁场灵敏度的提高。随着磁场强度升高,拱形微纳光纤的干涉波长蓝移,灵敏度为47.81 pm/mT,FBG对磁场不敏感,拱形微纳光纤传感器的磁场灵敏度比非拱形高11.66倍。升温过程中拱形微纳光纤的干涉波长发生蓝移,温度灵敏度为43.02 pm/℃,FBG的干涉波长发生红移,温度灵敏度为9.34 pm/℃。磁场传感器显示出良好的重复性和线性,级联的FBG对磁场不敏感,可以实现对磁场传感器的温度补偿。  相似文献   

3.
温度解耦增敏式光纤光栅应变传感器   总被引:1,自引:0,他引:1  
飞机载荷参数测试对保障飞行安全至关重要,光纤光栅传感器凭由诸多优势在不断尝试应用在其中。为了实现对结构应变的精确测量,同时排除温度带来的影响,通过对基底及光栅刻写工艺的特殊设计,实现了温度解耦增敏式光纤光栅应变传感器,并对基底进行有限元分析。在10~60℃的温度范围内,该新型传感器温度灵敏度为45pm/℃,较裸光纤光栅增敏4.5倍,线性度良好。在MTS拉伸试验机上测试拉伸试验件在0~700με条件下传感器特性,灵敏度为1.46pm/με,较裸贴方式增敏1.4倍,线性度良好。传感器温度误差小于0.1℃,应变误差小于3με。实验结果表明,传感器解耦性能良好,与理论分析相符,满足飞机载荷谱测试的应用背景。  相似文献   

4.
实际环境中光纤光栅存在对应变与温度测量交叉敏感问题,提出了利用啁啾光纤光栅(CFBG)进行双参数同时测量的方法。通过将CFBG胶封于等强度梁上,利用CFBG反射谱的中心波长与带宽对温度与应变的灵敏度差异,组成系数解耦矩阵,实现对应变与温度的同时测量。室温下,CFBG的中心波长与带宽随应变变化的灵敏度分别为0. 79、1. 38 pm/με,线性度为0. 998 8、0. 999 3;在-20~60℃温度范围内,CFBG的中心波长与带宽随温度变化的灵敏度分别为22. 74、23. 97 pm/℃,线性度为0. 999 8、0. 997 0,表明使用单个CFBG可以实现同时测量应变与温度。  相似文献   

5.
两种封装的光纤光栅温度传感器的低温特性   总被引:1,自引:0,他引:1  
介绍了光纤光栅(FBG,Fiber Bragg Gratings)温度传感器的两种封装形式。推导了两种FBG温度传感器的温度敏感因素并进行了实验验证。实验研究了两种FBG温度传感器在-70~0 ℃的中心波长低温变化特性,比较了相同条件下两种FBG温度传感器的实验结果。结果表明:细不锈钢管封装的FBG温度传感器的中心波长在-60 ℃时发生了突变,急剧下降;而镀金FBG温度传感器的中心波长在-70~0 ℃随温度线性变化,重复性较好并且几乎没有迟滞现象。两种传感器在线性变化区间的温度灵敏系数KT 分别为28.2 pm/ ℃和21.3 pm/ ℃,分别是裸光纤布拉格光栅的3倍和2.3倍,它们的线性拟合度都超过0.999。  相似文献   

6.
基于聚合物封装的光纤布拉格光栅压力传感器   总被引:2,自引:0,他引:2       下载免费PDF全文
设计并研究了一种光纤布拉格光栅压力传感器,FBG1与FBG2串联连接,其中FBG1直接封装于聚合物之中,而FBG2先粘贴于弹性基体上再封装于聚合物之中。推导了传感器的灵敏度和解耦算法,并且使用有限元法计算了本传感器压力灵敏度和温度灵敏度,最后对传感器进行了实验验证。实验结果表明FBG1和FBG2的压力灵敏度分别为197.4 pm/MPa和95.7 pm/MPa,温度灵敏度分别为47.2 pm/℃和36 pm/℃,具有良好的线性度,较小的回程误差,并且符合该传感器感知的压力和温度解耦条件。同时,随着聚合物小圆环直径增加,基体的应变量越来越大,并趋近于没有基体时聚合物的应变量。研究表明,较之传统的聚合物封装的光纤光栅压力传感器,本传感器的聚合物与套筒不易脱落,两者之间的非固结连接可以增加传感器灵敏度,并且本传感器具有温度补偿功能。  相似文献   

7.
为了检测光纤布拉格光栅(FBG)对压力响应的灵敏度和可重复操作性,根据FBG传感的原理,分别讨论了其温度和应变传感特性。通过实验测量了FBG轴向应力与中心反射波长的关系,得到两者之间呈良好的线性关系,光栅的轴向应变灵敏度为0.013pm/μm。将FBG黏贴在一圆柱杆上,测量了压力增大和减小时FBG中心波长的变化,拟合得到线性度分别可达到0.999 0和0.999 9,压力响应灵敏度均为4.8×10~(-3) nm/MPa,并计算出中心波长实验值的相对误差为2.05%,同时分析了误差存在的主要原因。  相似文献   

8.
FBG级联MZI的温度和酒精溶液浓度传感特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了测量白酒蒸馏过程中的温度和酒精溶度,制作了一种基于马赫曾德仪(MZI)与光纤布拉格光栅(FBG)级联的可同时测量温度和酒精溶液浓度的光纤传感器。FBG是利用飞秒激光逐线刻写的方式在单模光纤(SMF)中制作的周期为2.2μm,布拉格波长为1 591.21 nm,透射谱深度可达23 d B的4阶光纤布拉格光栅;MZI是将细芯光纤和SMF采用纤芯错位和锥腰扩大熔接技术制作的腔长为8.7 mm,对比度为28.5 d B的透射式光纤干涉传感器。基于多光束干涉理论对传感器的温度和酒精溶液浓度传感特性进行分析,利用MZI干涉波谷与FBG透射峰的灵敏度差异,结合灵敏度系数矩阵实现对温度和酒精溶液浓度的同时测量。实验中,传感器的酒精溶液浓度和温度灵敏度分别可达-41.37 pm/%和58.96 pm/℃。该传感结构在白酒酿造产业有潜在的应用前景。  相似文献   

9.
为了测量控机床结构件、微加工工作台的微小变形量,设计了一种高精度弓型光纤布拉格光栅(FBG)微位移传感器。将光纤布拉格光栅的栅区部分粘贴在弓型上下壁处,当弓形件发生变形时,可测出上下壁的应变值,从而测得位移值并进行温度解耦。实验结果表明,在量程为1mm时,传感器的灵敏度为2.02pm/μm,线性相关系数为0.998 3,实验的迟滞误差为4.08%,重复性误差为4.08%。在温度补偿实验中可以看出,当温度上升1℃,波长漂移量不到1pm。类似于弓型结构衍生出一种半弓型结构的位移传感器。两类传感器相比,弓型传感器的温度灵敏度比半弓型传感器小0.001 5pm/μm,温度补偿效果更好;但半弓型传感器的线性度为0.4%,线性度比弓型传感器好。两种传感器均满足测量值稳定可靠、精度高、抗电磁干扰能力强,温度不敏感等要求。  相似文献   

10.
为实现敏感元件仅为单一光纤光栅流速传感器的多参数同时测量,提出了一种流速/温度共采的光纤布拉格光栅(FBG)涡轮流速传感器。该传感器通过涡轮实现流体冲击力对光纤光栅中心波长的频率调制,解决光纤光栅温度应变的交叉敏感,理论计算得到其流速检测灵敏度为2.91·10-2 m/(s·Hz-1)。为测试传感器的性能,搭建了传感器测试系统,并选取光纤动态解调仪解调的光纤光栅中心波长动态信号作为试验原始数据。应用快速傅里叶变换(FFT)法分析试验数据,得到传感器流速的检测下限为0.541 7m/s,检测灵敏度为2.57·10-2 m/(s·Hz-1),检测精度为25mm/s,略小于理论计算值,其主要原因在于圆管内流体的流速并非均匀分布的匀速运动,管道内壁对流体具有一定的黏滞力。应用经验模式分解分析原始数据获取其趋势项信号,得到该传感器的温度灵敏度为10.6pm/℃,检测精度为0.5℃。  相似文献   

11.
为了实现可变体机翼的结构健康监测,提出了一种基于级联长周期光栅(cascaded long-period fiber grating,CLPG)的光纤Bragg光栅(fiber Bragg grating,FBG)监测系统.该监测系统以FBG为传感元件,以CLPG为边沿滤波器件,经CLPG调制后FBG反射光功率会发生变化,通过对FBG谐振波长处光功率的探测,从而实现FBG传感信号的监测.监测系统具有结构简单、成本低、解调速度快等优点.利用该监测系统对某型可变体机翼进行结构健康监测,结果表明该监测系统的应变分辨率为2με,实验结果与有限元分析结果相符,最小误差仅为3.27%,表明该监测系统能够用于可变体机翼的结构健康监测.  相似文献   

12.
以一种环形腔结构的 MW- EDFL为例 ,详细说明了多波长光纤激光器的结构特点、工作原理和研究现状 ,同时介绍了几种多波长光纤激光器的最新报道 ,并预言了多波长光纤激光器的广泛应用  相似文献   

13.
文中介绍了光纤布拉格光栅(Fiber Bragg Grating,FBG)分布传感的一般理论和其在损伤识别方面的研究概况,同时利用有限元分析软件对简谐载荷作用下的简支板一维方向上的应变分布进行了谐响应理论分析,并根据分析结果确定了FBG应变传感器的分布间距。  相似文献   

14.
基于FBG的波长可调谐环形掺铒光纤激光器   总被引:2,自引:1,他引:2  
在介绍光纤光栅波长调谐原理的基础上,设计了一种环形腔掺铒光纤激光器。利用光纤光栅(FBG)作为波长调谐元件,在20~170 ℃的温度范围内,实现了输出激光波长在1 547.7~1 556.5 nm内的连续可调,调谐线性度达99.96%,激光光谱的3 dB带宽均小于0.05 nm,20 dB带宽均小于0.08 nm,边模抑制比大于52 dB,输出功率可达21.2 mW。结果表明:可调谐掺铒光纤激光器具有可用带宽较宽、功率高、线宽窄、与光纤元件天然兼容等优点。  相似文献   

15.
光纤Bragg光栅测力环在系杆拱桥中的应用   总被引:4,自引:0,他引:4  
针对系杆拱桥索力长期监测的特点,研制了光纤Bragg光栅锚索测力环。光纤光栅测力环具有测试精度高、测试简单方便、长期可靠性好和抗干扰能力强等突出优点。介绍了光纤光栅测力传感器的结构特点和研究过程,及其在系杆拱桥换索施工中的成功应用。应用结果表明,光纤光栅测力传感器可有效监测钢管混凝土系杆的受力状况。  相似文献   

16.
为提高光纤光栅温度传感器的灵敏度,文中采取纤芯弹光系数大于包层弹光系数的长周期光纤光栅且在其包层外面涂覆一层随温度的升高折射率减小的薄膜材料,同时采用热膨胀系数大的金属封装光栅三种增敏措施。计算表明,增敏后的温度传感器其灵敏度系数为0.2375nm/℃,温度测量分辨力小于0.1℃。  相似文献   

17.
5MN光纤布拉格光栅力值传感器   总被引:1,自引:0,他引:1  
针对山体滑坡中大力值监测的应用需求,提出了基于光纤Bragg光栅(FBG)的5 MN力值传感器。该传感器采用8根FBG构成4组光栅偶对圆柱弹性体的应变进行采集,光栅偶能有效地补偿温度对FBG尺寸的影响。通过ANSYS数值模拟计算并优化了圆柱弹性体的结构尺寸,并按照国家规程进行了传感器检定实验。实验结果表明,该传感器的直径为124mm,长度为302mm,应力测量范围为500~5 000kN,综合精度为1%,最大力值对应的波长变化为2 567pm,灵敏度为2kN/pm。该传感器除具有光栅传感的基本特点以外还具有结构简单、量程大、精度高等优点,不仅适用于滑坡力值监测,还适用于建筑、化工、煤矿、军事等领域的力值监测。  相似文献   

18.
设计了一种用于光纤光栅传感测量网络的数据采集系统.给出了系统的基本电路连接围,详细分析了信号的检测.放大.滤波及转换处理,该系统较好地应用到光纤光栅传感测量实验中。  相似文献   

19.
电压的实时测量是电力系统稳定、安全的关键。提出了一种基于啁啾光纤光栅的电压传感器,利用压电陶瓷的逆压电效应带动黏贴在其上面的传感啁啾光栅发生形变,使传感啁啾光栅的波长发生漂移,通过检测传感啁啾光栅和参考啁啾光栅反射光包络的强度变化,获取被测电压的幅值和频率信息。理论分析了电压与光功率变化的关系,搭建了带温度补偿的双啁啾光栅传感系统,实验研究了传感器的静态和实时动态特性。实验结果表明,该传感器的相关系数R2为0.999 8,电压灵敏度达到0.048mW/V,既能直接检测直流电压,也能较好地检测交流电压及其频谱信息,为在复杂环境评估电能质量提供了参考。  相似文献   

20.
魏莉  周祖德  黄俊  何玉苗 《中国机械工程》2013,24(14):1873-1876
基于光纤Bragg光栅(fiber Bragg grating,FBG)传感技术,提出了一种基于永磁结构的FBG非接触机械振动位移测量方法,设计了永磁作用下FBG振动传感器的结构,采用ANSYS有限元软件进行了理论分析和数值仿真,制造了FBG传感器实验装置,进行了静态位移标定和动态测试实验,确定了传感器的线性区间。研究结果表明:该测量方法能满足相关振动检测要求,传感器线性区间内灵敏度为1.14μm, 线性度可达0.996,完全可应用于机械系统结构损伤和运行状态分布式动态监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号