首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
镍电解液用P204萃取除铜   总被引:4,自引:2,他引:4  
以P204为萃取剂,从镍电解液中萃取除铜。研究了pH、相比(O/A)、P204体积浓度和振荡时间对萃取效果的影响,确定了P204萃取铜的最佳条件。结果表明:随着pH的升高,铜的萃取率增大;相比(O/A)越大萃取分离效果越好;随着P204体积浓度的升高,铜萃取率也相应的升高。室温下P204萃取铜的最佳工艺条件:P204的体积浓度15%,相比(O/A)1∶2,水相初始pH2.0,振荡时间3 min。在此最佳条件下,待处理液的一级萃取率达81.33%。反萃实验中反萃率可达84.97%。  相似文献   

2.
采用HBL型萃取剂从电镀污泥和红土镍矿的浸出液中萃取分离铜镍钴,考察了浸出液初始pH值、萃取溫度、萃取时间和萃取相比O/A对Cu、Ni和Co萃取率的影响。结果表明:Ni、Cu的萃取率随着萃取初始pH的增大而逐渐增大并在pH值2.0以上基本达到平衡,同时随O/A值增大而显著增大,但萃取效率受萃取溫度和时间的影响较小;与此同时,Co等其他金属离子的萃取率都相对较低。HBL型萃取剂对Ni、Cu离子的萃取动力学速率较大和萃取选择性较高,对浸出液中各金属组分的萃取选择性依次为:Cu~(2+)Ni~(2+)Co~(2+)及其他金属离子,这与各金属离子和萃取剂形成的螯合物稳定性相关。适当的萃取条件,采用HBL型萃取剂可以从电镀污泥和红土镍矿的浸出液中有效萃取分离铜镍钴。  相似文献   

3.
用LIX84从富钴结壳硫酸浸出液中选择性萃取铜   总被引:4,自引:2,他引:4  
采用LIX84作萃取剂、硫酸作反萃剂 ,从大洋富钴结壳常温常压活化硫酸浸出除铁后液中萃取铜。试验考察了相比、平衡水相pH值、时间等因素对LIX84萃铜的影响。结果表明 ,相比、平衡水相 pH值、混合时间都对铜的萃取率有一定影响。最后优化出的萃取工艺条件为 (体积百分数 )有机相 12 %LIX84+ 88%煤油 ,室温 ,相比 (O/A)=1/ 2 0 ,出口水相pH2 60± 0 0 5 ,萃取级数为 2级 ,每级混合时间 5min。经过 2级萃取、1级洗涤、3级反萃后 ,可以得到完全符合电解沉积要求的硫酸铜溶液 ,从而使浸出液中的铜与其它金属彻底分离  相似文献   

4.
从铜铁锌酸性液中选择性萃取铜   总被引:3,自引:0,他引:3  
采用Lix984萃取剂 ,对含铜铁锌酸性浸出液进行选择性萃取铜研究。结果表明 ,萃取剂浓度为 3%时 ,铜的萃取率可达到 99% ,且锌和铁共萃率低 ;萃取混合时间 >2min时 ,铜的萃取率达 96 % ,而铁和锌的萃取率 <5 % ;当相比 (O/A)为 1∶1时 ,铜的萃取效果最佳 ;随萃取值的增大 ,铜的萃取率升高 ,但为了避免萃取污物的大量产生 ,应控制萃取pH <2 .5。反萃试验结果表明 ,铜和铁的反萃率随着反萃剂浓度、反萃相比、反萃时间的增大而升高。  相似文献   

5.
为探究萃取剂LIX984的界面吸附性能,利用滴体积法研究了水相pH值、相比(O/A)、温度以及几种金属离子对LIX984/DT100-H_2O体系界面性质的影响,计算了界面特性吸附参数C_(min)和A_I,C_(min)为萃取剂分子在液-液界面饱和时,有机相中的最低浓度,其值越大,界面活性越小,AI表示萃取剂分子在界面上的表观横截面积,即每个分子在界面上占有的平均面积,其值越大,分子有序性越低。实验表明,在pH=1.5~3.0范围内随着水相pH值升高Cmin减小,pH=3.0时萃取剂分子界面活性最好;pH=2.0时AI最小,萃取剂分子的界面排列最有序。在相比(O/A)1∶5~5∶1范围内,Cmin随相比的增加先增大后减小,AI随相比的增加先降低后升高,即O/A=1∶1时LIX984界面活性最差但在界面上的排列最有序。温度由20℃升高至40℃时,Cmin几乎不变,在20~40℃间对LIX984界面活性影响不大;AI随温度的升高而增大,20℃时萃取剂分子在界面上排列最有序。水相中Fe~(2+),Al~(3+),Mg~(2+)含量为0.5~6.0 g·L~(-1),Ca~(2+)含量为0.1~0.5 g·L~(-1)时,这几种金属离子的引入使Cmin降低而AI增加,其中Ca~(2+)影响最大。  相似文献   

6.
采用Lix984作萃取剂,煤油作稀释剂混合而成溶液萃取的有机相,从含Ni~(2+),Fe~(3+),Mg~(2+)离子的硫酸盐溶液中萃取分离Cu~(2+).实验结果表明,在一定范围内,铜萃取率随萃取剂浓度的升高、相比的增加、萃取时间的延长、初始水相pH值的增加、萃取温度的升高以及搅拌时间的延长而增加.本实验的优化条件为萃取剂体积分数达60%,相比为O∶A=2∶1,萃取时间为16 min,萃取初始水相pH值为2.5,萃取温度在25~45℃之间,搅拌速度为240 r/min.在最佳条件下,铜萃取率高达95.55%.Fe~(3+)萃取率为8.82%,Ni~(2+)的萃取率为5.47%,Mg~(2+)的萃取率为2.36%.从而达到Cu~(2+)与其它金属离子有效分离的效果.  相似文献   

7.
张丽霞 《湿法冶金》2007,26(2):91-91
B.Ramachandra Reddy等研究了用溶解在煤油中的肟基萃取剂如LIX 84和LIX 973N从Cu-Ni-Co-Fe冰铜的硫酸盐浸出液中溶剂萃取分离并回收铜。优化了各参数,如料液pH、萃取剂浓度、相比、逆流萃取与反萃取。料液pH对铜萃取率的影响试验表明,浸出液的酸度对于获得最大萃取率是适宜的。两种萃取剂体积分数均为40%时,LIX973N对铜的萃取率高出10%。  相似文献   

8.
采用萃取工艺从含铜难处理金精矿焙砂浸出液中回收铜,考查了萃取剂浓度、相比O/A、混合时间、pH值等因素对铜萃取效率的影响,获得优化工艺条件:萃取剂浓度为25%,相比O/A=2:1,混合时间为3 min,pH值1.5~2。在优化工艺条件下两级逆流萃取,铜的萃取率为98.53%。  相似文献   

9.
采用P204作为萃取剂,磺化煤油为稀释剂,从锰钴镍溶液中二级萃取分离锰,有机相反萃取富集锰,考察各因素对锰萃取率及分离系数的影响并确定最优条件。结果表明,在室温下,一级萃取相比O/A=2.5,P204含量30%,pH=3.5,皂化率30%,锰萃取率为62.39%;二级萃取在P204含量30%,皂化率30%,O/A=2,锰的总萃取率达98.06%,锰与钴、镍分离系数分别为90.11、92.33。萃取液经硫酸反萃洗钴镍,按相比O/A=10,酸度70 g/L,可洗去85%以上的钴和镍。洗钴镍后液经硫酸反萃锰,按相比O/A=4,酸度110 g/L,可反萃98.27%的锰,反萃液钴、镍的浓度小于0.5 g/L。  相似文献   

10.
使用新型萃取剂HBL110从红土镍矿硫酸加压浸出液中直接萃取镍,考察了萃取剂浓度、平衡pH、相比对镍萃取的影响,并绘制HBL110萃镍等温线。结果表明,在有机相体积组成为50%HBL110+50%磺化煤油,料液pH为2.5,有机相皂化率60%,相比O/A=1/1,萃取时间5min,温度30℃的条件下,镍的单级萃取率达到96%,采用相比O/A=1/2,镍的5级逆流萃取率达到99%。负载有机相使用稀酸洗涤后,按照时间10min、相比O/A=4/1、温度30℃、硫酸浓度100g/L的优化条件进行4级逆流反萃,镍反萃率达到98.5%,反萃液镍浓度达到40g/L,且反萃液杂质含量低。  相似文献   

11.
复杂镍浸出液萃取净化的研究   总被引:1,自引:1,他引:0  
以D2EHPA为萃取剂,从钼镍矿的复杂镍浸出液中萃取分离锌、铜。考察了萃取平衡时间、D2EHPA体积浓度、相比(O/A)、料液pH对萃取分离锌、铜效果的影响,确定了D2EHPA萃取锌、铜的最佳条件。室温下萃取除杂的最佳工艺条件为:萃取平衡时间3 min,D2EHPA的体积浓度20%,相比1∶1,料液pH=2.0,一级萃取率锌为89.5%,铜为11.0%。负载有机相经1 mol/L的H2SO4反萃,锌、铜和镍均可完全反萃。经三级逆流萃取可将料液中锌降低到0.01 g/L,萃取率达98.9%。  相似文献   

12.
以N902为萃取剂,从废弃印刷线路板氨性浸出液中萃取回收铜,研究萃取剂浓度、相比(O/A)、萃原液初始pH和时间对铜萃取率的影响。结果表明,室温下N902萃取铜最优条件为:萃取剂浓度15%、O/A=1∶2、料液初始pH=10、萃取时间2.5min。在此条件下Cu2+萃取率98.62%,用2mol/L硫酸溶液对负载有机相进行一级反萃4min,Cu2+反萃率达89.91%,其溶液可满足电积提铜的要求。  相似文献   

13.
低浓度钴溶液除铁、钙、镁和P204深度除杂工艺研究   总被引:1,自引:0,他引:1  
研究了从低浓度钴溶液中除去铁、钙、镁的pH条件和P204萃取除杂工艺.除铁初步试验表明:黄钠铁矾法除铁时,将pH值控制在3.0~4.0之间,除铁效果很好,达到99%以上.在黄钠铁矾-针铁矿联合法的除铁操作条件下,除铁效果也达到了95.65%,且钴损率从21.3%降到了4.74%;低浓度钴溶液最佳除钙镁pH值为3.5~4.0;正交试验得到P204萃取除杂最佳工艺参数:有机相组成ψP204/ψ汽油为25%/75%,O/A相比1∶2,皂化率为75%.  相似文献   

14.
废弃线路板(PCB)浸出液经萃取提铜除铁后利用P507富集分离浸出液中的Ni 2+,考察萃取剂浓度、皂化率、相比(O/A)、萃取时间、浸出液pH对Ni 2+萃取率的影响。结果表明,在皂化率为30%、相比1∶1、P507浓度20%、萃取搅拌时间3min、浸出液pH 2.07的条件下,PCB微生物浸出液中Ni 2+的萃取率可达99.4%以上。  相似文献   

15.
严明英 《重庆钢研》2003,(28):51-58
以煤油(主要是脂肪簇)作稀释剂,采用萃取剂LIX87QN可从碳酸铵溶液中共同萃取铜和镍。本文研究了平衡PH和萃取剂浓度(有机相)对共同萃取的影响。研究表明,镍的萃取对PH相当敏感,超过平衡PH(约9)的范围,萃取率迅速降低。对于一种典型的浸出液,含铜和镍约3kg/m^3,碳铵60kg/m^3,确定了共同萃取、除NH^3以及选择性反萃镍和铜的工艺条件。铜和镍的萃取率都约为100%,镍的反萃率是99.2%,铜的反萃率接近100%。  相似文献   

16.
针对分步萃取法萃取钴工艺流程繁杂、萃取级数较多的问题,采用P204+P507为复配萃取剂从工业硫酸钴浸出液中一次分离出Zn2+、Ca2+、Mn2+、Cu2+等。探究了平衡pH、复配萃取剂配比、萃取相比O/A、有机相皂化率等对元素萃取率的影响。结果表明:以28%P204+7%P507为复配萃取剂,65%溶剂油为稀释剂,在有机相皂化率为50%、萃取平衡pH=3.57、相比O/A=2的条件下,Zn2+、Ca2+、Mn2+、Cu2+的单级萃取率分别达到99.97%、94.65%、88.42%、87.18%,Co2+萃取率仅有17.42%。后续使用1.5 mol/L硫酸在反萃相比O/A=20、两次洗涤条件下可以将99%的钴洗涤下来。  相似文献   

17.
研究用溶剂萃取法从低浓度铟的硬锌渣浸出液中富集铟,探讨萃取过程中有机相组成、浸出液初始pH、萃取相比(Va/Vo)、搅拌速度、两相混合时间对铟萃取率的影响,以及反萃取过程中,盐酸浓度、相比(Va/Vo)对铟反萃取率的影响。试验结果表明:在浸出液初始pH约为0.5、有机相组成为20%P204+80%磺化煤油、搅拌速度为1 000r/min、萃取时间2min条件下,经过4级逆流萃取,两相分相效果较好,铟萃取率稳定在98%左右;反萃取过程中,用4mol/L盐酸作反萃取剂,水相残余酸度较低,铟单级反萃取率在92%以上。该低浓度铟溶液通过直接萃取-反萃取可以实现短流程、高收率、低能耗富集。  相似文献   

18.
从含铜铁锌的酸性溶液中选择性萃取铜   总被引:4,自引:0,他引:4  
用Lix984作萃取剂,从含铜铁梓的酸性浸出液中选择性萃取铜,结果表明,萃取剂浓度为3%,混合时间为2min,Vo:Va=1:1,pH=2.2时,萃取效果最好,铜萃取率大于96%,铁、锌共萃率低于5%,有机相中无萃取污物产生。反萃试验结果表明,用硫酸溶液反萃取,铜和铁的反萃率随着反萃取剂浓度、反萃相比,反率时间的增大而升高。  相似文献   

19.
采用萃取工艺从黄金冶炼废水中回收铜,考查了萃取剂浓度、相比O/A、混合时间、pH值等因素对铜萃取率的影响,获得优化工艺条件:萃取剂浓度为20%,相比O/A=2:1,混合时间为3 min,pH值1.5~2。在优化工艺条件下开展了工业试验,铜萃取率可达95%以上,反萃液铜离子浓度可达到36 g/L以上,满足铜电积工序要求,实现了铜的高效回收。  相似文献   

20.
系统研究了转炉钒渣无焙烧酸浸液中钒与铁的萃取分离情况。进行萃取-反萃单因素试验,分别考察萃取温度、初始p H值,萃取剂组成、萃取相比,萃取、反萃时间,反萃剂浓度、反萃相比等因素对萃取和反萃结果的影响。萃取试验结果表明:在常温(20℃),浸出液p H2.0,有机相组成20%P204+5%TBP+75%磺化煤油,相比(O/A)1∶1,震荡时间5 min条件下,钒的一级萃取率达到74.49%,铁的萃取率仅为1.92%,其他离子不进入有机相;该条件下进行四级错流萃取,钒的总萃取率可达97.89%。反萃试验结果表明:反萃时间4 min,反萃剂浓度200g/L,反萃相比(O/A)5∶1时,钒的反萃率达98.58%,有机相中的铁不进入反萃水相,提钒酸浸液得到净化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号