首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nanocomposite TiO2/molecular sieve 4A as photocatalyst was fabricated and employed to develop an effective, rapid, simple and environmental friendly method for chemical oxygen demand (COD) detection. This new approach overcomes the problems with direct use of TiO2 for COD detection techniques such as photo-decay and difficulties in recycling. Here, the COD value was calculated from the changed absorbance of Cr(VI) and the mechanism of the photocatalytic oxidation was discussed. Under the optimal condition, the COD sensor gave a detection limit of 0.24 mg l−1 and a linear range from 3.0 to 15 mg l−1. With the recoveries from 97 to 103% and without any pretreatments for complicated samples, the developed sensor was successfully applied to the determination of COD in real samples.  相似文献   

2.
A portable, cost-effective, environmental friendly and miniature thin-layer photoelectrochemical system in conjunction with an ultraviolet light emitting diode (UV-LED) is developed for determination of chemical oxygen demand (COD), namely UV-LED PeCOD. The COD value is directly quantified by measuring the amount of electrons captured at a nanostructured TiO2 electrode during the exhaustive photoelectrocatalytic degradation of organic species in the thin-layer cell. The key parameters of the photoelectrochemical system, such as applied potential bias, light intensity and solution pH, were investigated and optimized. Combined with a microelectrochemical system and a laptop computer, the UV-LED PeCOD system enables end-users to perform on-site COD analysis in a simple, rapid, sensitive and accurate manner. Under the optimal conditions, the system can achieve a practical detection limit of 0.2 ppm COD with a linear range of 0–300 ppm COD. The proposed UV-LED PeCOD technology can potentially make a revolutionary improvement to the conventional COD analysis and may be widely used in water quality monitoring industry.  相似文献   

3.
A novel Ti/Sb-SnO2/PbO2 composite electrode was fabricated for COD determination. The new electrode configuration improved the sensitivity of the amperometric method apparently. Effects of common experimental parameters, such as applied potential, pH and concentration of the electrolyte on its analytical performance were investigated. A linear range of 0.5-200 mg L−1 COD and a detection limit (a signal-to-noise ratio of 3) of 0.3 mg L−1 were achieved under optimized conditions. The experiments for detecting COD in model samples and real samples were carried out to evaluate the electrode's performance. The obtained results were in good agreement with those determined by the standard dichromate method, with a relative error less than 12%.  相似文献   

4.
The UV component of solar light is responsible for skin cancer and a number of other skin disorders. An inexpensive and simple ultraviolet (UV) selective photodetector would be convenient to measure the UV exposure. A sealed two-electrode photoelectrochemical cell (PEC) based on a novel double-layer of nanocrystalline TiO2 has been designed and constructed as a UV-selective-sensor. The properties of the sensor, including spectral response, current-voltage characteristics, sensitivity, linearity and response time are reported. The results demonstrate the potential for the use of this low cost UV-photodetector - which does not require UV selective filters - to provide a warning of harmful solar UV-radiation levels.  相似文献   

5.
Crystalline CeO2/TiO2 core/shell nanorods were fabricated by a hydrothermal method and a subsequent annealing process under the hydrogen and air atmosphere. The thickness of the outer shell composed of crystal TiO2 nanoparticles can be tuned in the range of 5-11 nm. The crystal core/shell nanorods exhibited enhanced gas-sensing properties to ethanol vapor in terms of sensor response and selectivity. The calculated sensor response based on the change of the heterojunction barrier formed at the interface between CeO2 and TiO2 is agreed with the experimental results, and thus the change of the heterojunction barrier at different gas atmosphere can be used to explain the enhanced ethanol sensing properties.  相似文献   

6.
A compact tubular sensor based on NASICON (sodium super ionic conductor) and V2O5-doped TiO2 sensing electrode was designed for the detection of SO2. In order to reduce the size of the sensor, a thick-film of NASICON was formed on the outer surface of a small Al2O3 tube; furthermore, a thin layer of V2O5-doped TiO2 with nanometer size was attached on the NASICON as a sensing electrode. This paper investigated the influence of V2O5 doping and sintering temperature on the characteristics of the sensor. The sensor attached with 5 wt% V2O5-doped TiO2 sintered at 600 °C exhibited excellent sensing properties to 1–50 ppm SO2 in air at 200–400 °C. The EMF value of the sensor was almost proportional to the logarithm of SO2 concentration and the sensitivity (slope) was −78 mV/decade at 300 °C. It was also seen that the sensor showed a good selectivity to SO2 against NO, NO2, CH4, CO, NH3 and CO2. Moreover, the sensor had speedy response kinetics to SO2 too, the 90% response time to 50 ppm SO2 was 10 s, and the recovery time was 35 s. On the basis of XPS analysis for the SO2-adsorbed sensing electrode, a sensing mechanism involving the mixed potential at the sensing electrode was proposed.  相似文献   

7.
Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers   总被引:1,自引:0,他引:1  
Formaldehyde is a kind of hazardous gases dangerous to human health. Hence, gas sensor is an essential device to monitor formaldehyde in air, especially in indoor ambient. Semiconductor metal oxides are studied as gas-sensing material to detect most of key gases for decade years. For the purpose of actual application and meeting a variety of conditions, diverse additives added into host material are expected to improve the performance of gas sensors. The formaldehyde gas-sensing characteristics of undoped and NiO-doped SnO2 (NSO) nanofibers synthesized via a simple electrospinning method were investigated in this study. It is noticed that the addition of NiO causes the distortion at the surface of SnO2 nanofibers, which is responsible to adjust activation energy, grain sizes and chemical states of host material. The sensors fabricated from NSO nanofibers exhibited good formaldehyde sensing properties at operating temperature 200 °C, and the minimum-detection-limit was down to 0.08 ppm. The response time and recovery time of the sensors were about 50 s and 80 s to 10 ppm formaldehyde, respectively. The sensor shows a good long-term stability in 90 days. The simple preparation and excellent properties significantly advance the viability of electrospun nanofibers as gas sensing materials. The sensing mechanisms of NSO nanofibers to formaldehyde were discussed. The results indicated that NSO nanofibers could be used as a candidate to fabricate formaldehyde sensors in practice.  相似文献   

8.
Gas sensors were designed and fabricated using oxide nanofibers as the sensing materials on micro platforms using micromachining technology. Pure and Pt doped SnO2 nanofibers were prepared by electrospinning and their H2S gas sensing characteristics were subsequently investigated. The sensing temperatures of 300 and 500 °C could be attained at the heater powers of 36 and 94 mW, respectively, and the sensors showed high and fast responses to H2S. The responses of 0.08 wt% Pt doped SnO2 nanofibers to 4-20 ppm H2S, were 25.9-40.6 times higher than those of pure SnO2 nanofibers. The gas sensing characteristics were discussed in relation to the catalytic promotion effect of Pt, nano-scale morphology of electrospun nanofibers, and sensor platform using micro heater.  相似文献   

9.
We report a novel route for the fabrication of highly sensitive and rapidly responding Nb2O5-based thin film gas sensors. TiO2 doping of Nb2O5 films is carried out by co-sputtering without the formation of secondary phases and the surface area of TiO2-doped Nb2O5 films is increased via the use of colloidal templates composed of sacrificial polystyrene beads. The gas sensitivity of Nb2O5 films is enhanced through both the TiO2 doping and the surface embossing. An additional enhancement on the gas sensitivity is obtained by the optimization of the bias voltage applied between interdigitated electrodes beneath Nb2O5-based film. More excitingly, such a voltage optimization leads to a substantial decrease in response time. Upon exposure to 50 ppm CO at 350 °C, a gas sensor based on TiO2-doped Nb2O5 film with embossed surface morphology exhibits a very high sensitivity of 475% change in resistance and a rapid response time of 8 s under 3 V, whereas a sensor based on plain Nb2O5 film shows a 70% resistance change and a response time of 65 s under 1 V. Thermal stability tests of our Nb2O5-based sensor reveal excellent reliability which is of particular importance for application as resistive sensors for a variety gases.  相似文献   

10.
A new gas sensor using TiO2 nanotube arrays was fabricated and explored for formaldehyde detection at room temperature. Highly ordered vertically grown TiO2 nanotube arrays were synthesized by using the conventional electrochemical anodization process. The sensor using the fabricated nanotube arrays as the sensing elements demonstrated a good response to different concentrations of formaldehyde from 10 to 50 ppm and a very good selectivity over other reducing gas species such as ethanol and ammonia at room temperature. While the exact sensing mechanism is unclear, some possibilities are briefly discussed.  相似文献   

11.
A complete review, critical evaluation, and thermodynamic optimization of phase equilibrium and thermodynamic properties of the MnO–SiO2–“ TiO2”–“ Ti2O3” systems at 1 bar pressure are presented. The molten oxide phase was described by the Modified Quasichemical Model. The Gibbs energies of the manganosite, spinel, pyrophanite and pseudobrookite and rutile solid solutions were taken from the previous study. A set of optimized model parameters for the molten oxide phase was obtained which reproduces all available reliable thermodynamic and phase equilibrium data within experimental error limits from 25 °C to above the liquidus temperatures over the entire range of compositions and oxygen partial pressure in the range of pO2 from 10−20 bar to 10−7 bar. Complex phase relationships in these systems have been elucidated, and discrepancies among the data have been resolved. The database of model parameters can be used along with software for Gibbs energy minimization in order to calculate any phase diagram section or thermodynamic properties.  相似文献   

12.
Porous gas sensing films composed of TiO2 nanotubes were fabricated for the detection of volatile organic compounds (VOCs), such as alcohol and toluene. In order to control the microstructure of TiO2 nanotubular films, ball-milling treatments were used to shorten the length of TiO2 nanotubes and to improve the particle packing density of the films without destroying their tubular morphology and crystal structure. The ball-milling treatment successfully modified the porosity of the gas sensing films by inducing more intimate contacts between nanotubes, as confirmed by scanning electron microscopy (SEM) and mercury porosimetry. The sensor using nanotubes after the ball-milling treatment for 3 h exhibited an improved sensor response and selectivity to toluene (50 ppm) at the operating temperature of 500 °C. However, an extensive ball-milling treatment did not enhance the original sensor response, probably owing to a decrease in the porosity of the film. The results obtained indicated the importance of the microstructure control of sensing layers in terms of particle packing density and porosity for detecting large sized organic gas molecules.  相似文献   

13.
Pure and Cu-doped ZnO nanofibers were synthesized via electrospinning technology. The morphology and structure of the as-synthesized nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The effects of Cu doping on H2S sensing properties at low concentration (1-10 ppm) were investigated at 230 °C. The results show that the H2S sensing properties of ZnO nanofibers are effectively improved by Cu doping: 6 at% Cu-doped ZnO nanofibers show a maximum sensitivity to H2S gas, and the response to 10 ppm H2S is one order of magnitude higher than the one of pure ZnO nanofibers.  相似文献   

14.
Nanocrystalline WO3/TiO2-based powders have been prepared by the high energy activation method with WO3 concentration ranging from 1 to 10 mol%. The samples were thermal treated in a microwave oven at 600 °C for 20 min and their structural and micro-structural characteristics were evaluated by X-ray diffraction, Raman spectroscopy, EXAFS measurements at the Ti K-edge, and transmission electron microscopy. Nitrogen adsorption isotherms and H2 Temperature Programmed Reduction were also carried out for physical characterization. The crystallite and particle mean sizes ranged from 30 to 40 nm and from 100 to 190 nm, respectively. Good sensor response was obtained for samples with at least 5 mol% WO3 activated for at least 80 min. Ceramics heat-treated in microwave oven for 20 min have shown similar sensor response as those prepared in conventional oven for 120 min, which is highly cost effective. These results indicate that WO3/TiO2 ceramics can be used as a humidity sensor element.  相似文献   

15.
Artificial neural network (ANN) was developed to predict the morphology of TiO2 nanotube prepared by anodization. The collected experimental data was simplified in an innovative approach and used as training and validation data, and the morphology of TiO2 nanotube was considered as three parameters including the degree of order, diameter and length. Applying radial basis function neural network to predict TiO2 nanotube degree of order and back propagation artificial neural network to predict the nanotube diameter and length were emphasized in this paper. Some important problems such as the selection of training data, the structure and parameters of the networks were discussed in detail. It was proved in this paper that ANN technique was effective in the prediction work of TiO2nanotube fabrication process.  相似文献   

16.
A complete review, critical evaluation, and thermodynamic optimization of the phase equilibrium and thermodynamic properties of the MnO–“ TiO2”–“ Ti2O3” systems at 1 bar pressure are presented. The molten oxide phase was described by the Modified Quasichemical Model. The Gibbs energy of spinel, pyrophanite and pseudobrookite solid solutions were modeled using the Compound Energy Formalism, and rutile solid solution was treated as a simple Henrian solution. Manganosite solid solution was assumed to dissolve both Ti4+ and Ti3+. A set of optimized model parameters for all phases was obtained which reproduces all available reliable thermodynamic and phase equilibrium data within experimental error limits from 25 °C to above the liquidus temperatures over the entire composition ranges and in the range of pO2 from 10−20 to 10−7 bar. Complex phase relationships in these systems have been elucidated, and discrepancies among the data have been resolved. The database of model parameters can be used along with software for Gibbs energy minimization in order to calculate any phase diagram section or thermodynamic properties.  相似文献   

17.
In this paper, highly ordered titania nanotube (TNT) arrays fabricated by anodization were annealed at different temperatures in CO to create different concentrations of surface defects. The samples were characterized by SEM, XRD and XPS. The results showed different concentrations of Ti3+ defects were doped in TNT arrays successfully. Furthermore, after co-immobilized with horseradish peroxidase (HRP) and thionine chloride (Th), TNT arrays was employed as a biosensor to detect hydrogen peroxide (H2O2) using an amperometric method. Cyclic voltammetry results and UV-Vis absorption spectra presented that with an increase of Ti3+ defects concentration, the electron transfer rate and enzyme adsorption amount of TNT arrays were improved largely, which could be ascribed to the creation of hydroxyl groups on TNT surface due to dissociative adsorption of water by Ti3+ defects. Annealing in CO at 500 °C appeared to be the most favorable condition to achieve desirable nanotube array structure and surface defects density (0.27%), thus the TNT arrays showed the largest adsorption amount of enzyme (9.16 μg/cm2), faster electron transfer rate (1.34 × 10−3 cm/s) and the best response sensitivity (88.5 μA/mM l−1).  相似文献   

18.
This paper reports a surface molecular self-assembly strategy for chlorpyrifos (CPF) imprinting of polymer membranes at the surface of TiO2 nanoparticles for flow injection chemiluminescence (CL) detection of pesticide CPF which using the character of TiO2 enhance the chemiluminescence of the luminol–H2O2 system. The CL signals produced by the reaction between luminol and H2O2, were increased in the presence of CPF imprinting of polymer membranes at the surface of TiO2 which were eluted from the column through luminol and H2O2 injection. The CL enhancement by TiO2 nanoparticles of the luminol–H2O2 system was supposed to originate from the catalysis of TiO2 nanoparticles and CPF. The CL intensity was linear over the logarithm of concentration of chlorpyrifos ranging from 1.0 × 10−10 to 5.0 × 10−7 mol/L (r2 = 0.996), and the limit of detection was 1.0 × 10−11 mol/L (3σ). The detection limit for CPF is lower than other methods. An excellent CL selectivity for CPF over other pesticides was also achieved. The combination of surface molecular self-assembly with polymer molecular imprinting on larger surface area of TiO2 nanoparticles produce a high ratio of imprinted sites and, thus, provide an ultrasensitive CL detection of CPF.  相似文献   

19.
The influence of different oxygen backgrounds on the sensing of hydrogen with SnO2 nanomaterials was investigated and a model was proposed. It is based on two hydrogen reaction mechanisms at the surface of tin oxide that can take place simultaneously; the weight of each mechanism depends on the concentration of oxygen in the ambient atmosphere. In the absence of oxygen the adsorbed hydrogen builds surface donors (rooted hydroxyl groups). In the presence of oxygen the reaction between hydrogen and pre-adsorbed oxygen ions dominates. Due to the fact that this behavior is present for very different nanomaterials, the model probably describes a SnO2 specific feature.  相似文献   

20.
Qi  Tong  Xuejun  Huitao  Li  Rui  Yi 《Sensors and actuators. B, Chemical》2008,134(1):36-42
Pure and Sm2O3-doped SnO2 are prepared through a sol–gel method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The sensor based on 6 wt% Sm2O3-doped SnO2 displays superior response at an operating temperature of 180 °C, and the response magnitude to 1000 ppm C2H2 can reach 63.8, which is 16.8 times larger than that of pure SnO2. This sensor also shows high sensitivity under various humidity conditions. These results make our product be a good candidate in fabricating C2H2 sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号