首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combined theoretical and experimental study of steady-state heat flow and segregation in ESR is presented. The segregation model permits prediction of pressure gradients, hence, interdendritic flow velocities responsible for macrosegregation in the “mushy≓ zone of axisymmetric ESR ingots. The heat flow model considers the solidus isotherm as a moving boundary. The relationships between power and slag temperature as well as power and heat transfer coefficient are experimentally measured and included in the heat balance equation for the slag. Experiments on both a low-temperature simulated ESR apparatus and on a 200 mm diam ESR ingot mold verify both models. S. CHAKRAVORTY formerly Research Associate, Department of Metallurgy and Mining Engineering, University of Illinois. J. D. NAUMAN formerly Engineering Associate, Cabot. Corporation  相似文献   

2.
On the assumption of one dimensional axial heat flow a mathematical model is developed for describing the temperature profile in small ESR units. The model considers the regions both above and below the slag level and allowance is made for the development of a slag crust on the electrode near the top slag level. The governing equations are solved numerically and the computed results appear to be in agreement with experimental data reported on a laboratory scale ESR unit, employing 1 in. electrodes.  相似文献   

3.
In the electroslag remelting (ESR) process, low-frequency power supply can significantly reduce power consumption and achieve three-phase balance of power supply. Therefore, a transient coupling model of fluid flow, heat transfer, and component transport in the ESR process, which is coupled to the electromagnetic field calculated using Maxwell 3D software, is established to study the influence of low-frequency power supply on desulfurization. When a 50 Hz power supply is used, a skin effect is observed in the metal, and the direction of the Lorentz force at the slag/metal interface changes. However, this effect becomes less pronounced with decreasing current frequency. Sulfur is mainly transferred at the electrode tip, and the desulfurization rate is approximately 50%. Electrochemical reactions mainly occur at the electrode tip/slag interface and the metal pool/slag interface. The removal rate of sulfur using direct current (DC) power supply is less than that using an alternating current power supply. The DC reverse polarity power supply leads to higher desulfurization rate than DC straight polarity, which is 74% and 31%, respectively. The sulfur removal rate increases from 81.37% to 84.59% as the frequency decreases from 50 to 2 Hz because of the longer electrochemical reaction time at this lower frequency.  相似文献   

4.
对影响电渣重熔体系渣池运动的因素进行了分析与计算,同时建立了渣池速度场与温度场耦合的数学模型。计算结果表明:电磁力是渣池运动的主要驱动力;此外,渣池温度分布不均匀产生的浮力对渣池运动的影响也很显著,而电动力及金属熔滴在渣中下落产生的摩擦力对渣池运动的影响相对较小。  相似文献   

5.
Heat transfer and fluid flow phenomena in electroslag refining   总被引:4,自引:0,他引:4  
A mathematical formulation has been developed to represent the electromagnetic force field, fluid flow and heat transfer in ESR units. In the formulation, allowance has been made for both electromagnetically driven flows and natural convection; furthermore, in considering heat transfer the effect of the moving droplets has been taken into account. The computed results have shown that the electromagnetic force field appears to be the more important driving force for fluid motion, although natural convection does affect the circulation pattern. The movement of the liquid droplets through the slag plays an important role in transporting thermal energy from the slag to the molten metal pool, although the droplets are unlikely to contribute appreciably to slag-metal mass transfer The for-formulation presented here enables the prediction of thermal and fluid flow phenomena in ESR units and may be used to calculate the electrode melting rates from first principles. While a detailed comparison has not yet been made between the predictions based on the model and actual plant scale measurements, it is thought that the theoretical predictions are consistent with the plant-scale data that are available.  相似文献   

6.
The paper is based on the development and use of a mathematical model that simulates the electroslag remelting (ESR) operation. The model assumes axisymmetrical geometry and steady state. Maxwell equations are first solved to determine the electromagnetic forces and Joule heating. Next, coupled fluid flow and heat transfer equations are written for the two liquids (slag and liquid metal). Thek-ε model is used to represent turbulence. The system of coupled partial differential equations is then solved, using a control volume method. Using the operating parameters as inputs, the model calculates the current density, velocity, and temperature throughout the fluids. This paper is concerned with fluid flow and heat transfer in the slag phase. After being validated by comparing its results with experimental observation, the model is used to evaluate the influence of operating variables, such as the fill ratio, and the thermophysical properties of the slag.  相似文献   

7.
电渣重熔体系渣池运动分析及数学模型发展   总被引:5,自引:0,他引:5  
对电渣重熔过程中渣池运动的驱动力进行了分析,并对电渣重熔体系的数学模型进行了回顾和评价。结果表明,引起渣池运动的因素主要包括渣池中的电磁力和渣池温度不均匀分布而产生的对流运动;电极端部形状对渣池电磁场分布有一定影响,进而影响渣池的运动。最后提出了改进和渣池运动数学模型  相似文献   

8.
A three-dimensional finite-element model has been developed to understand the electromagnetic field and liquid metal pool shape in an electroslag remelting (ESR) process with two series-connected electrodes. The magnetic vector potential is introduced into the Maxwell’s equations, and the nodal-based method is used to solve a three-dimensional harmonic electromagnetic field. The heat transfer of the solidifying processes of ingot is modeled by a source-based enthalpy method, and the Joule heating is included in an inner source. The results show the main part of the current flows through the slag cap and a little enters into ingot in a two-series-connected electrode ESR system. As the interaction of self-induced and mutual-induced of two electrodes occurs, the skin effect is significantly suppressed by the neighbor effect. A symmetrical pattern of magnetic flux density in a two-series-connected electrode ESR system is displayed. The magnetic flux density between two electrodes is reinforced and reduced at the outside of two electrodes. The maximum Joule heat power density is located at the interface of slag and electrodes, and it decreases with an increase of the electrode immersion depth. The averaged Joule heat power density increases when slag cap thickness is reduced. With the increase of ingot height, the liquid metal pool shape changes from arc shaped to “V” shaped. When the ingot height is more than the diameter in the ESR processes, the liquid metal pool shape is constant.  相似文献   

9.
A mathematical formulation has been developed to represent the electromagnetic force field, fluid flow and heat transfer in ESR units. In the formulation, allowance has been made for both electromagnetically driven flows and natural convection; furthermore, in considering heat transfer, the effect of the moving droplets has been taken into account. The computed results have shown that the electromagnetic force field appears to be the more important driving force for fluid motion, although natural convection does affect the circulation pattern. The movement of the liquid droplets through the slag plays an import-ant role in transporting thermal energy from the slag to the molten metal pool, although the droplets are unlikely to contribute appreciably to slag-metal mass transfer. The for-formulation presented here enables the prediction of thermal and fluid flow phenomena in ESR units and may be used to calculate the electrode melting rates from first principles. While a detailed comparison has not yet been made between the predictions based on the model and actual plant scale measurements, it is thought that the theoretical predictions are consistent with the plant-scale data that are available. Presently on leave from Institute of Chemical Engineering and Technology, Punjab University, Lahore-1, Pakistan.  相似文献   

10.
N. Ren  L. M. Li  F. S. Qi  Z. Q. Liu 《钢铁冶炼》2018,45(2):125-134
Electroslag remelting (ESR) furnace with triple-electrode is always used to produce large ingots and the process complexity makes the application not widely spread. Thus, a transient three-dimensional coupled model in industrial scale has been developed to investigate the coupled magneto-hydrodynamics two-phase flow and heat transfer in system. Different from the previous studies with multi-electrode, the current work reveals the triple-electrode ESR with the formation of metal droplets and the solidification of liquid metal. Compared with single-electrode system with the same fill ratio, the heat source in the slag pool with triple-electrode is much more dispersive, and the U-shape metal pool in the ESR furnace with triple-electrode is much shallower and flatter than the V-shaped one in the single-electrode system. A shorter distance from each electrode to the center of system brings a higher heat efficiency, as well as a deeper and narrower metal pool.  相似文献   

11.
针对大型塑料模具毛坯电渣锭凝固过程中产生疏松和偏析等缺陷,从改变大型钢锭凝固条件角度出发,试图将大圆钢锭改为等截面面积的扁锭,同时采用双极串联供电控制渣池的温度场,以达到提高钢锭凝固质量的目的.本文介绍了采用双极串联、T型结晶器,抽锭电渣重熔工艺生产了0.32 m×2.0 m×4.0 m的718塑料模具钢板坯工业试验,重熔板坯锭的检验结果表明,板坯锭成分、低倍等凝固质量显著提高.  相似文献   

12.
A combined theoretical and experimental study of steady-state fluid flow, heat flow and segregation in axi-symmetric ingot production is presented, with specific applications in continuous casting and ESR. The fluid flow-segregation model involves the coupling of convective heat and fluid flow in the fully liquid metal pool ahead of the liquidus isotherm to the interdendritic fluid flow responsible for macrosegregation in the “mushy” zone of ingots solidifying under axi-symmetric conditions. Experiments on low-temperature Sn-Pb alloys verify the solidification model. S. D. RIDDER AND MEHRABIAN, formerly Graduate Student and Professor at the University of Illinois at Urbana-Champaign, IL S. KOU, formerly Research Associate at the University of Illinois in Urbana-Champaign, IL  相似文献   

13.
孟凡凯  陈林根  孙丰瑞  杨博 《钢铁》2014,49(2):79-87
 针对中国钢铁工业低温余热回收利用率低的现状,提出一种基于半导体热电发电技术回收高炉冲渣水显热的技术方案,建立了相应的计算模型,分析了冲渣水温度、热电单元长度、热电模块填充系数、换热器流道长度等关键参数与装置性能的关系。结果表明,对于100 ℃的高炉冲渣水,利用热电发电技术,每米流程可使水温下降约1.5 ℃,每平方米换热面积可以产生约0.93 kW电能,热效率约为2%,设备成本的回收周期在10年左右。  相似文献   

14.
摘要:旋转电极电渣重熔通过改变结晶器内熔体的流动和传热规律,增强了渣池与电极间的对流换热,在提高电极熔化速率和生产效率方面具有巨大潜力。提出了电渣重熔过程电极熔化速率的求解方法,并考虑了电极旋转时的强制对流,基于多物理场耦合模型预测了电极直径、转速对电极熔化速率的影响规律。结果表明,随着转速提高,金属液滴由从电极中心滴落向电极边缘滴落转变,高温区由渣池外侧向渣池中心移动。当转速从0增大至90r/min,55mm直径电极的熔化速率从7.90g/s增大至9.68g/s,对比固定电极,转速为90r/min时,生产效率最多提高了22.5%;进一步增大转速,电极熔化速率反而减小。存在一个最佳转速可使熔化速率达到最大,且该最佳转速随着电极直径的增大而减小。  相似文献   

15.
利用了FLUENT软件建立了电渣重熔(ESR)过程二维轴对称瞬态模型.使用有限体积法求解耦合的电磁场、动量和能量守恒方程,铸锭的凝固过程由焓-多孔介质模型处理,系统地研究了电流对电渣重熔GH984G凝固过程多场耦合行为和凝固参数的影响规律.模拟结果表明:电流由2.3kA增大为2.5kA,体系中电流密度、磁感应强度、洛伦...  相似文献   

16.
王洪涛  韩毅华  曹立军  朱立光 《钢铁》2022,57(8):111-122
模具钢是模具最重要的组成部分,其品种、规格、质量对模具的性能、使用寿命和制造周期起着决定性作用。因为模具钢苛刻的质量要求,对模具钢生产技术及制备过程提出了更高要求。电渣重熔(ESR,electroslag remelting)工艺冶炼出的钢锭具有高均匀度、高洁净度、低偏析度等优势,逐渐成为冶炼优质模具钢的主要技术手段。在电渣重熔生产过程中,电渣渣系起着熔化电极、钢水精炼、凝固结晶等主要作用,是熔炼稳定的基础,因此,选择合适的渣系成分及性能是电渣重熔工艺的关键。结合4Cr5MoSiV1热作模具钢特性,以某钢厂现行5种H13热作模具钢ESR渣系为研究对象,通过渣系物化性能分析和微观结构模拟研究,提出了渣系优化方向,确定了适合电渣重熔H13热作模具钢的渣系。结果表明,L4渣系的熔点、黏度、密度、光学碱度、电导率等物理化学性能较好。该熔渣铝的平均配位数最大,为2.39,且三配位和四配位的铝所占比例较高,网络结构较为复杂;复杂结构单元Q3和Q4含量最多,具有高聚合度的网络结构;Al—O键长较短且存在键长更短的Si—O、Si—F键,电渣重熔过程的稳定性最...  相似文献   

17.
渣皮的厚度、均匀性和力学性能是影响抽锭电渣钢锭表面质量的主要因素。薄而均匀渣皮是获得良好连铸锭表面质量的关键。文中分析了渣池电流密度分布、结晶器壁附近的热传导条件、渣成分和"高温区"温度变化等因素对渣皮厚度的影响。生产试验表明,通过控制操作温度和渣系成分获得薄而均匀的渣皮,并确保渣系具备长渣形式和适当的高温强度及塑性可得到良好表面质量的电渣连铸锭。  相似文献   

18.
 基于传热学基本理论,建立了80 t级三相电渣炉大型钢锭电渣重熔过程数学模型,并通过工业生产75t TP316LN奥氏体不锈钢钢锭验证模型,研究了大型电渣钢锭温度场分布情况及二次晶间距的变化情况。结果表明:渣池中心部位温度达1800℃,自上而下沿着传热方向中心线温度逐渐降低;金属熔池最深处达1500mm,大约等于钢锭直径的0.8倍;金属熔池上方具有50mm圆柱段以保证渣皮薄而均匀;二次枝晶间距大小由钢锭外侧边缘向中心部位呈递增趋势,模拟结果与实际生产情况吻合。  相似文献   

19.
核电站压力容器用特厚钢板的生产技术   总被引:2,自引:0,他引:2  
核电站压力容器用特厚钢板,因其使用条件特殊、质量要求高,需要采用特殊的生产技术才能达到要求。综述了核电用特厚钢板生产工艺中的冶炼、锭(坯)制造、轧制和热处理等关键技术,重点介绍和比较了模铸锭、电渣重熔锭和锻造坯三种不同锭(坯)的制造技术及特点。列举了国外先进钢铁企业利用这三种锭(坯)的制造技术生产核电用特厚钢板的实例及其典型产品的实物性能。结果表明,这些钢板具有良好的综合力学性能,尤其是具有高的低温冲击韧性。  相似文献   

20.
电渣重熔(ESR)钢能显著改善冷轧辊质量,提高轧辊使用性能。通过对电渣重熔工艺的系统研究,在国产10t大型电渣重熔炉上开发了以递减功率模型为核心的钢锭结晶质量控制,渣皮厚度控制和防止增氢等先进工艺技术。采用该技术的重熔电耗为1 400(kW·h)/t,所生产的产品质量稳定,各项性能指标达到比国家标准更为严格的企业内控标准,得到用户好评。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号