首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
综述了板式塔板研究的最新进展及其相关的工业化情况,同时根据塔板结构简图介绍了各个塔板的原理和特点,对其传质和流体力学性能进行了简要的分析,讨论了塔板的发展前景。  相似文献   

2.
Valve trays are becoming popular in the chemical process industries owing to their flexibility to handle a wide range of vapor throughputs. Using the rigorous rate based model, the importance of the non-equilibrium approach is demonstrated for a typical extractive distillation process in a Glitsch V-1 valve tray column. Simulation results based on an in-house developed code indicated that the rate based model predictions for a valve tray column operation showed significant differences relative to the equilibrium model. Even small errors in product purities translated into nonoptimal feed stage locations and inaccurate number of stages required. The counter-intuitive effect of high reflux ratio on separation is explained.  相似文献   

3.
A comprehensive analysis of the development of flow pattern in a bubble column reactor is presented here through extensive LDA measurements and CFD predictions. In the LDA measurements, the simultaneous measurements of 2D velocity-time data were carried out at several radial locations and many axial cross-sections of the column for two different spargers. The profiles of mean axial liquid velocity, fractional gas hold-up and bubble slip velocity showed excellent agreement between the predictions and the experimentally measured values. The experimental results showed that the mean tangential velocity varies systematically in the radial as well as along the axial co-ordinates. The turbulence parameters viz. turbulent kinetic energy, energy dissipation rate and eddy diffusivity were also analysed. The estimated values of local energy dissipation rate obtained using eddy isolation model were used for establishing the energy balance in the column. The experimental data were used for the estimation of normal and shear stress profiles. For the case of single point sparger, just above the sparger region, the bubble plume was seen to have a strong tangential component of motion thereby yielding higher gas hold-up slightly away from the centre. This visual observation was well captured in profiles of all the hydrodynamic parameters obtained from the experimental data. CFD simulations of the mean velocities, gas hold-up and turbulent kinetic energy compared well with the experimental results.  相似文献   

4.
We investigate experimentally the occurrence of shape oscillations accompanied by path transition of periodically produced air bubbles rising in water. Within the period of bubble formation, the induced velocity is measured to examine bubble-liquid and bubble-bubble interactions. The flow is produced in a small-scale bubble column with square-shaped cross section. A capillary aerator produces bubbles of size 3.4 mm at a frequency of 5 Hz. Measuring techniques employed are high-speed imaging to capture bubble shape oscillations and path geometry, and laser-Doppler anemometry (LDA) to measure the velocity in the liquid near the rising bubbles. The experimentally obtained bubble shape data are expanded in Legendre polynomials. The results show the occurrence of oscillations by the periodicity of the expansion coefficients in space. Significant shape oscillations accompanied by path transition are observed as the second-mode oscillation frequency converges to the frequency of the initial shape oscillations. The mean velocity field in the water obtained by LDA agrees well with potential theory. An analysis of the decay of the induced flow shows that there is no interaction between the flow fields of two succeeding 3.4 mm bubbles in the rectilinear path when the bubble production frequency is lower than 7.4 Hz.  相似文献   

5.
In this work a detailed experimental hydrodynamic characterization of a needle sparger rectangular bubble column has been performed. The liquid velocity profiles and bubble plume oscillation frequency have been measured by means of laser Doppler anemometry (LDA), and the bubble velocity map by particle image velocimetry (PIV). In this way, the influence of the superficial gas velocity, liquid height and aeration pattern on the column flow structure was analysed. A highly uniform upward flow structure with down flow near the walls was obtained by means of a full-length aeration pattern. This flow structure was preserved even for high gas fractions values. The partial-length aeration patterns with the aerated zone (defined as the aerated width divided by the column width) larger than 0.7 provide a bubble plume and two pure liquid vortical structures in the column bottom, although they are static in nature. With aerated zones lower than 0.6, an oscillating bubble plume is obtained. A non-dimensional analysis of bubble plume oscillation frequency shows a dependence of bubble plume behaviour with the aerated zone. In this way, two different types of bubble plume oscillations, namely confined bubble plume oscillation and free bubble plume oscillation, are introduced and analysed.  相似文献   

6.
LDA has been used to measure liquid velocities in a small-scale bubble column, internal diameter of 50 mm, packed with glass Raschig rings, 10 and 15 mm. A mixture of benzyl-alcohol and ethyl alcohol was index matched against the packing material. A method to separate the signals from liquid and bubbles was developed. It was found that the axial time-averaged liquid velocity was lower than that obtained in empty bubble columns, and that both the time-averaged liquid velocity and the RMS value of the liquid increased for the larger packing size.  相似文献   

7.
The unsteady two-phase flow of water laden with small air bubbles in a model bubble column is investigated experimentally. Phase-Doppler anemometry (PDA) is used for measuring the velocities of water and bubbles. The measured sizes of reflecting tracers in the water and of the air bubbles are used to discriminate between water and bubble data. The investigations are focussed on the unsteady behaviour of the flow and on the interaction between the two phases. The measurement of relative (slip) velocities between bubbles and water reveals information about the dynamic behaviour of the two-phase system under the action of buoyancy on the disperse phase. The evaluation of time series of bubble velocities yields insight into typical frequencies at which the flow fluctuates. It is shown that, at all locations in the flow field, the velocity probability density functions of bubbles and liquid can be described by two superimposed Gaussian functions. The bubbles belonging to the two Gaussians exhibit different slip velocities. The probability for the occurrence of bubble collisions is quantified on the basis of the PDA data.  相似文献   

8.
A fast response probe is used to measure local heat transfer in a bubble column. It captured the variations in local heat transfer coefficients due to changes in local hydrodynamic conditions in radial and axial directions. These measurements have been used to identify flow regime transitions, variations in flow patterns and local hydrodynamic structure as obtained with different gas distributors and varying gas velocity. Standard deviations of pressure measurements obtained with a fast response probe have been compared with heat transfer coefficient fluctuations for the first time and the similarities and differences have been pointed out. Variations in average heat transfer coefficients and standard deviations in radial and axial directions point to different hydrodynamic conditions and are compared with literature studies. Relationships between local heat transfer measurements and hydrodynamic conditions are shown.  相似文献   

9.
An experimental investigation is reported on the effect of fiber length distribution on gas holdup in a cocurrent air-water-fiber bubble column. Different combinations of 1 and 3 mm Rayon fibers are used to simulate different fiber length distributions. At a constant total fiber mass fraction, gas holdup generally decreases with increasing mass fraction of the 3 mm Rayon fiber while other conditions remain constant. Crowding factors estimated using four different methods (Nc=Nc,A, , Nc,L, and Nc,M) and the parameters and are tested on their performance to quantify the overall effects of fiber mass fraction and fiber length and its distribution on gas holdup. and provide the best characterization of the fiber effects on gas holdup in the cocurrent air-water-fiber bubble column. The crowding factor estimated using the model-based average fiber length (Nc,M) also provides a good characterization and is better than the other crowding factor definitions.  相似文献   

10.
The ratio of effective drag coefficient to bubble diameter is of critical importance for CFD simulation of gas–liquid flow in bubble columns. In this study, a novel model is proposed to calculate the ratio on the basis of the Dual-Bubble-Size (DBS) model. The motivation of the study is that a stability condition reflecting the compromise between different dominant mechanisms can serve for a closure in addition to mass and momentum conservative constraints, and the interphase momentum transfer should be related to different paths of energy dissipation. With the DBS model, we can first offer a physical interpretation on macro-scale regime transition via the shift of global minimum point of micro-scale energy dissipation from one potential trough to the other. Then the proposed drag model is integrated into a CFD simulation. Prior to this integration, we investigate the respective effects of bubble diameter and correction factor and found that the effect of bubble diameter is limited, whereas the correction factor due to the bubble swarm effect is eminent and appropriate correction factor has to be selected for different correlations of standard drag efficient to be in accord with experiments. By contrast, the DBS drag model can well predict the radial gas holdup distribution, the total gas holdup as well as the two-phase flow field without the need to adjust model parameters, showing its great potential and advantage in understanding the complex nature of multi-scale structure of gas–liquid flow in bubble columns.  相似文献   

11.
Time-dependent gas holdup variation in a two-phase bubble column is reported with air and tap water as the working fluids. The results indicate that time-dependent gas holdup is closely related to the water, whose quality is unsteady and changes, not only during the two-phase flow, but also during idle periods. The significance and characteristics of the time-dependent gas holdup variation are influenced by the bubble column operation mode (cocurrent or semi-batch), the sparger orientation, the superficial gas velocity, and the superficial liquid velocity. It is proposed that a volatile substance (VS), which exists in the water in very small concentrations and inhibits bubble coalescence, evaporates during column operation and results in a time-dependent gas holdup. The influence of bubble column operation mode, sparger orientation, superficial gas velocity, and superficial liquid velocity on the time-dependent gas holdup variation are explained based on their effects on bubble size, bubble contacting frequency and mixing intensity. This work reveals that regular tap water may cause significant reproducibility problems in experimental studies of air-water two-phase flows.  相似文献   

12.
Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid concentrations(0–30 vol%). Radial profiles of time-averaged gas holdup, axial liquid velocity, and turbulent kinetic energy were measured by using in-house developed conductivity probes and Pavlov tubes. Effects of column diameter, superficial gas velocity, and solid concentration were investigated in a wide range of operating conditions. Experimental results indicated that the average gas holdup remarkably increases with superficial gas velocity, and the radial profiles of investigated flow properties become steeper at high superficial gas velocities. The axial liquid velocities significantly increase with the growth of the column size, whereas the gas holdup was slightly affected. The presence of solid in bubble columns would inhibit the breakage of bubbles, which results in an increase in bubble rise velocity and a decrease in gas holdup, but time-averaged axial liquid velocities remain almost the same as that of the hollow column. Furthermore, a 2-D axisymmetric k–ε model was used to simulate heterogeneous bubbly flow using commercial code FLUENT 6.2. The lateral lift force and the turbulent diffusion force were introduced for the determination of gas holdup profiles and the effects of solid concentration were considered as the variation of average bubble diameter in the model. Results predicted by the CFD simulation showed good agreement with experimental data.  相似文献   

13.
This paper documents experiments and CFD simulations of the hydrodynamics of our two-phase (water, air) laboratory internal loop airlift reactor (40 l). The experiments and simulations were aimed at obtaining global flow characteristics (gas holdup and liquid interstitial velocity in the riser and in the downcomer) in our particular airlift configurations. The experiments and simulations were done for three different riser tubes with variable length and diameter. Gas (air) superficial velocities in riser were in range from 1 to 7.5 cm/s. Up to three circulation regimes were experimentally observed (no bubbles in downcomer, bubbles in downcomer but not circulating, and finally the circulating regime). The primary goal was to test our CFD simulation setup using only standard closures for interphase forces and turbulence, and assuming constant bubble size is able to capture global characteristics of the flow for our experimental airlift configurations for the three circulation regimes, and if the simulation setup could be later used for obtaining the global characteristic for modified geometries of our original airlift design or for different fluids. The CFD simulations were done in commercial code Fluent 6.3 using algebraic slip mixture multiphase model. The secondary goal was to test the sensitivity of the simulation results to different closures for the drag coefficient and the resulting bubble slip velocity and also for the turbulence. In addition to the simulations done in Fluent, simulation results using different code (CFX 12.1) and different model (full Euler–Euler) are also presented in this paper. The experimental measurements of liquid interstitial velocity in the riser and in the downcomer were done by evaluating the response to the injection of a sulphuric acid solution measured with pH probes. The gas holdup in the riser and downcomer was measured with the U-tube manometer. The results showed that the simulation setup works quite well when there are no bubbles present in the downcomer, and that the sensitivity to the drag closure is rather low in this case. The agreement was getting worse with the increase of gas holdup in the downcomer. The use of different multiphase model in the different code (CFX) gave almost the same results as the Fluent simulations.  相似文献   

14.
Bubble column is widely used in both industrial and environmental applications. In this study, we examine the flow dynamics and stability of a bubble column driven by a point air source centrally mounted at the bottom using Phase Doppler anemometry (PDA). The model cylindrical bubble column had an inner diameter of 152 mm and was filled with the liquid to about 1 m height, above the point air source, which was made of a 30-mm diameter perforated air stone. The bubble diameters were within the range of 400–1300 μm. A customized setup was developed for accurate PDA measurements of the two phases, and detailed turbulent characteristics of the liquid phase velocity, bubble diameter, bubble velocity and the slip velocity were collected throughout the column. The comprehensiveness of the data set enabled a close examination of the hydrodynamic stability inside the column. Measurements were taken at three different air rates, namely 0.13, 0.25 and 0.38 L/min (corresponding to average gas volume fractions of 0.0065, 0.0138 and 0.0197, respectively). The results illustrated a large-scale coherent liquid circulation pattern inside the column. The circulation pattern in the upper column was relatively steady, while the pattern in the lower column was strongly unsteady with the probability density functions (pdf) for both the liquid and bubble velocities showing distinct twin peaks. An analysis based on the determination of the bubble drag forces and transversal lift forces is performed by decomposing the twin-peaked pdfs into two separated Gaussian distributions, one for the upward flow due to the bubble rises and the other for the downward flow due to circulation. Through the decomposition, a stability criterion can then be established by choosing the local bubble size as the representative length scale for the turbulent eddies inside the column. The analysis with the criterion illustrates why a steady circulation pattern was achieved in the upper column, and at the same time shows that the instability at the bottom column was induced by the low frequency meandering of the bubble swarm.  相似文献   

15.
16.
The lift force acting on bubbles in a swarm has been estimated by analyzing the instantaneous velocity-time data obtained using LDA in a cylindrical bubble column. Phase distinction was achieved through the multiresolution analysis of the velocity-time data. Several important issues related to the transverse motion of bubbles subjected to a shear field have been discussed quantitatively. The actually measured bubble sizes, the respective slip velocity values in transverse and axial directions and the local shear rates (γ) enabled the verification of known formulations for the lift coefficient (CL) for bubbles. At many locations in the column the radial flux of the gas phase by turbulent dispersion and the radial slip were estimated. The radially inward movement of bubbles from low to high axial velocity (from column wall to center, i.e., CL<0) was observed at most of the measurement locations. The local lift coefficient was estimated using the transverse drag force and the values support the results from the material balance approach. The estimated CL values showed a wide variation over the column cross-section.  相似文献   

17.
The goal of this study is to evaluate the performance of a fixed valve tray column designed to remove fly‐ash particles. A series of experiments were carried out at room temperature to demonstrate the collection efficiency of a fixed valve tray column at different gas and liquid superficial velocities. The fly‐ash particles removal characteristics of the fixed valve tray column were evaluated by measuring variations of concentration and size distribution of particles in the outlet. The mechanism of particle removal in this turbulent dispersion system was theoretically analyzed on the basis of diffusion, interception, sedimentation and impaction, and a model was proposed to predict the collection efficiency. The results show that the simulation results agree well with the experimental data. In contrast to most of the conventional models, the present model is capable of evaluating the effects of bubble hydrodynamics, system property, and operation conditions on the collection efficiency. The model is expected to guide effectively the design and operation of valve tray washing columns, which is widely applied nowadays. © 2012 American Institute of Chemical Engineers AIChE J, 59: 2168–2178, 2013  相似文献   

18.
Most of available gas-liquid mass transfer data in bubble column have been obtained in aqueous media and in liquid batch conditions, contrary to industrial chemical reactor conditions. This work provides new data more relevant for industrial conditions, including comparison of water and organic media, effects of large liquid and gas velocities, perforated plates and sparger hole diameter.The usual dynamic O2 methods for mass transfer investigation were not convenient in this work (cyclohexane, liquid circulation). Steady-state mass transfer of CO2 in an absorption-desorption loop has been quantified by IR spectrometry. Using a simple RTD characterization, mass transfer efficiency and kLa have been calculated in a wide range of experimental conditions.Due to large column height and gas velocity, mass transfer efficiency is high, ranging between 40% and 90%. kLa values stand between 0.015 and and depend mainly on superficial gas velocity. No significant effects of column design and media have been shown. At last, using both global and local hydrodynamics data, mass transfer connection with hydrodynamics has been investigated through kLa/εG and kLa/a.  相似文献   

19.
A general CFD-PBE (computational fluid dynamics-population balance equation) solver for gas–liquid poly-dispersed flows of both low and high gas volume fractions is developed in OpenFOAM (open-source field operation and manipulation) in this work. Implementation of this solver in OpenFOAM is illustrated in detail. The PBE is solved with the cell average technique. The coupling between pressure and velocity is dealt with the transient PIMPLE algorithm, which is a merged PISO-SIMPLE (pressure implicit split operator-semi-implicit method for pressure-linked equations) algorithm. Results show generally good agreement with the published experimental data, whereas the modeling precision could be improved further with more sophisticated closure models for interfacial forces, the models for the bubble-induced turbulence and those for bubble coalescence and breakage. The results also indicate that the PBE could be solved out the PIMPLE loop to save much computation time while still preserving the time information on variables. This is important for CFD-PBE modeling of many actual gas–liquid problems, which are commonly high-turbulent flows with intrinsic transient and 3D characteristics.  相似文献   

20.
According to literature, few experiments are performed in organic solvents which are mostly used in commercial gas-liquid reactors. However, it is commonly accepted that data obtained in aqueous solution allow to predict the surface tension effects, and to model the behaviour of organic solvents. In this work, we examine the validity of this approximation.In this objective, the flows observed in two pure media having similar viscosity but different surface tension—respectively, water (reference) and cyclohexane (solvent)—are successively compared at two scales: in a bubble column and in bubble plumes.In bubble plumes, as expected, the mean bubble size is smaller in the medium having the smallest surface tension (cyclohexane), but for this medium the destabilisation of flow is observed to occur at smaller gas velocity, due to break-up and coalescence phenomena. In bubble column, these phenomena induce the bubbling transition regime at lower gas velocity, whatever the operating conditions for liquid phase: batch or continuous. Consequently, when the two media are used at similar gas superficial velocity, but in different hydrodynamic regimes, greater gas hold-up and smaller bubble diameter can be observed in water; the interfacial area is then not always higher in cyclohexane.This result differs from the behaviour observed in the literature for aqueous solutions. The analysis of bubble plumes in aqueous solutions of butanol shows that this difference is due to a fundamental difference in coalescent behaviour between pure solvents and aqueous mixtures: the surface tension effect is less important in pure liquid than in aqueous solutions, because of the specific behaviour of surfactants.It is then still difficult to predict a priori the bubbling regime or the flow characteristics for a given medium, and all the more to choose an appropriate liquid as a model for industrial solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号