首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a procedure for synthesis of new organic-inorganic magnetic composite resins was established. The procedure was based upon immobilization of magnetite (Mag) as a ferromagnetic material within the polymer poly(acrylic acid acrylonitrile) P(AA-AN) and the ion exchange resin (Amberlite IR120). The produced magnetic resins, IR120-PAN-Mag (R1) and P(AA-AN)-Mag (R2) were assessed as sorbents for Cr(VI). Various factors influencing the sorption of Cr(VI), e.g., pH, equilibrium time, initial concentration and temperature were studied. The sorption process was very fast initially and maximum sorption was achieved within 3 h and pH 5.1. The kinetic of the system has been evaluated with pseudo first order model, second order model, Elovich model, intra-particle diffusion model and liquid film diffusion model. Chromium interaction with composite particles followed second-order kinetics with a correlation coefficient extremely high and closer to unity and rate constant (ks) has the values 1.68 × 10−4 and 1.9 × 10−4 g (mg−1 min−1) for R1 and R2, respectively. The values of equilibrium sorption capacity (qe) are consistent with the modeled data and attain the range 893–951 mg g−1. Kinetically, both pore diffusion and film diffusion are participating in ruling the diffusion of Cr(VI) ions. The sorption data gave good fits with Temkin and Flory–Huggins isotherm models. The isotherm parameters related to the heat of sorption are in the range 8–16 kJ mol−1 which is the range of bonding energy for ion exchange interactions and so suggest an ion exchange mechanism for removal of Cr(VI) by the composite sorbents. The adsorption process was exothermic with ΔH in the range of −73 to −97 kJ mol−1. The negative values of Gibbs free energy confirm the feasibility and the spontaneous nature of Cr(VI) removal with these novel composites.  相似文献   

2.
《Advanced Powder Technology》2021,32(10):3814-3825
In this work, pyrite/rhodochrosite (PyxRhy) composite synthesized from natural pyrite and rhodochrosite to remediate Cr(VI) containing wastewater was systematically investigated and evaluated. Results show that pyrite/rhodochrosite (1:1) showed the best Cr(VI) removal performance. XRD showed that emergence of MnS and pyrrhotite contributed to a significant increasing Cr(VI) reduction rate. The estimated maximum adsorption capacity was 95.58 mg/g at pH value of 6, temperature of 303.15 k, which was larger than other iron and manganese-based materials. Additionally, thermodynamic study illuminated that Cr(VI) removal by Py1Rh1 was a spontaneous and endothermic process. Taffel curve and EIS result presented higher corrosion current and lower electrical resistance for Py1Rh1, respectively, which was more favorable for the electron transfer. The surface cyclic regeneration of Fe(II) and Mn(II) provided long-term electron transfer to the Cr(VI) reduction. Our results demonstrated the great potentials of natural pyrite and rhodochrosite synthetic materials in the remediation of Cr(VI) polluted water.  相似文献   

3.
Friedel's salt (3CaO·Al2O3·CaCl2·10H2O or Ca4Al2(OH)12Cl2(H2O)4) is a calcium aluminate hydrate formed by hydrating cement or concrete in seawater at a low cost. In the current study, we carefully examined the adsorption behaviors of Friedel's salt for Cr(VI) from aqueous solution at different concentrations and various initial pHs. The adsorption kinetic data are well fitted with the pseudo-first-order Lageren equation at the initial Cr(VI) concentration from 0.10 to 8.00 mM. Both the experimental and modeled data indicate that Friedel's salt can adsorb a large amount of Cr(VI) (up to 1.4 mmol Cr(VI)/g) very quickly (t1/2 = 2–3 min) with a very high efficiency (>99% Cr(VI) removal at [Cr] < 4.00 mM with 4.00 g/L of adsorbent) in the pH range of 4–10. In particular, the competitive adsorption tests show that the Cr(VI) removal efficiency is only slightly affected by the co-existence of Cl and HCO3. The Cr(VI)-fixation stability tests show that only less than 0.2% adsorbed Cr(VI) is leaching out in water at pH 4–10 for 24 h because the adsorption/exchange of Cr(VI) with Friedel's salt leads to the formation of a new stable phase (3CaO·Al2O3·CaCrO4·10H2O). This research thus suggests that Friedel's salt is a potential cost-effective adsorbent for Cr(VI) removal in wastewater treatment.  相似文献   

4.
In this study, we have demonstrated a facile one-step solvothermal method for the synthesis of the graphene nanosheet (GNS)/magnetite (Fe(3)O(4)) composite. During the solvothermal treatment, in situ conversion of FeCl(3) to Fe(3)O(4) and simultaneous reduction of graphene oxide (GO) into graphene in ethylene glycol solution were achieved. Electron microscopy study suggests the Fe(3)O(4) spheres with a size of about 200 nm are uniformly distributed and firmly anchored on the wrinkled graphene layers with a high density. The resulting GNS/Fe(3)O(4) composite shows extraordinary adsorption capacity and fast adsorption rates for removal of organic dye, methylene blue (MB), in water. The adsorption kinetics, isotherms and thermodynamics were investigated in detail to reveal that the kinetics and equilibrium adsorptions are well-described by pseudo-second-order kinetic and Langmuir isotherm model, respectively. The thermodynamic parameters reveal that the adsorption process is spontaneous and endothermic in nature. This study shows that the as-prepared GNS/Fe(3)O(4) composite could be utilized as an efficient, magnetically separable adsorbent for the environmental cleanup.  相似文献   

5.
Heterojunction construction with low band gap materials is an effective way of utilizing UV light active materials under visible light irradiation. Here, we report the synthesis of Bi2(O,S)3/Zn(O,S) heterostructure using simple solvothermal method without surfactant. The catalysts were investigated with different characterization techniques. All the composite catalysts showed high light absorption capacity in the whole visible light spectrum. The catalytic activity of the catalysts was evaluated by Cr(VI) reduction. While pure Zn(O,S) catalyst showed no significant Cr(VI) reduction, higher photocatalytic activity than individual components were exhibited after heterojunction construction with Bi2(O,S)3. 20-BiZnOS catalyst with Bi/Zn molar percentage of 20% showed the best photocatalytic activity among the composites with 99.5% Cr(VI) reduction within 12 min under visible light irradiation. Heterojunction formation between Bi2(O,S)3 and Zn(O,S) nanoparticle, and selective adsorption of Cr(VI) and desorption of Cr(III) on the surface of 20-BiZnOS composite catalyst were ascribed to the enhanced photocatalytic activity of the composite catalyst.  相似文献   

6.
The removal of Cr(VI) from aqueous solution by rice straw, a surplus agricultural byproduct was investigated. The optimal pH was 2.0 and Cr(VI) removal rate increased with decreased Cr(VI) concentration and with increased temperature. Decrease in straw particle size led to an increase in Cr(VI) removal. Equilibrium was achieved in about 48 h under standard conditions, and Cr(III), which appeared in the solution and remained stable thereafter, indicating that both reduction and adsorption played a part in the Cr(VI) removal. The increase of the solution pH suggested that protons were needed for the Cr(VI) removal. A relatively high level of NO(3)(-) notably restrained the reduction of Cr(VI) to Cr(III), while high level of SO(4)(2-) supported it. The promotion of the tartaric acid modified rice straw (TARS) and the slight inhibition of the esterified rice straw (ERS) on Cr(VI) removal indicated that carboxyl groups present on the biomass played an important role in chromium remediation even though were not fully responsible for it. Isotherm tests showed that equilibrium sorption data were better represented by Langmuir model and the sorption capacity of rice straw was found to be 3.15 mg/g.  相似文献   

7.
The graphene oxide/bentonite (BG) composites are prepared through graphene oxide (GO) nanosheets successfully intercalated into acid-treated bentonite interlayer and deposited onto external surface. The BG composites exhibit a higher uptake capacity of toluidine blue (TB) dye from water solutions than normal bentonite owing to the synergistic effect between bentonite and GO. The as-prepared composites are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and N2-sorption analysis. The process parameters affecting the adsorption behaviors such as initial pH, temperature, contact time and initial concentration of dye are systematically investigated. The Langmuir isotherm model fit well with the equilibrium adsorption isotherm data and the maximum adsorption capacity is 458.7?mg·g?1 at pH 8 for BG composites modified using 1% GO. The pseudo-second-order kinetic model well describes the adsorption process of TB onto BG composites. The TB adsorption on BG composites is mainly attributed to ion exchange, electrostatic interaction and intermolecular interactions. The outstanding adsorption performances of composites for the removal of TB dye from water demonstrate its significant potential for environmental applications.  相似文献   

8.
A simple and effective technique for reduction of graphene oxide at low temperature (70 °C) using acetone was reported for the first time. Magnetically recoverable acetone reduced graphene oxide (ARGO)/Fe3O4 composite was synthesized by uniformly decorating Fe3O4 on ARGO. The synthesized ARGO/Fe3O4 composite was characterized by the powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform-infrared spectroscopy and thermogravimetric analysis. An organic dye rhodamine 6G was used as an adsorbate for investigating the adsorption characteristics of the composite. The adsorption kinetic data were best described by the pseudo-second-order model, and equilibrium was achieved within 2 h. Dye adsorption was favored in basic conditions (pH 9–11) and governed by intraparticle diffusion process. The maximum dye adsorption on the composite was 93.37 mg/g at 293 K, and it followed the Langmuir–Freundlich model. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the dye adsorption onto composite was feasible, spontaneous and exothermic. The ARGO/Fe3O4 composite was easily controlled in magnetic field for desired separation, leading to an easy removal of the dye from wastewater, which holds great potential for dye decontamination.  相似文献   

9.
In the present study, NZVI particles were synthesized from the plant extracts including Rosa damascene (RD), Thymus vulgaris (TV), and Urtica dioica (UD). The FTIR arspectshowed that polyphenols, proteins and organic acids which serve as reducing and stabilizing agents play a significant role in the synthesis of NPs and reduce the possibility of aggregation of NPs compared to chemical techniques of NPs synthesis. The amount and type of compounds in plant extracts affect the structure and also agglomeration of NPs after adsorption process. Based on the results, the highest removal efficiency occurred at pH 2. With increase in contact time and amount of dose, the percentage removal increases. Inversely, increase of initial concentration of Cr(VI) decreases the removal efficiency of the contaminant. These nanoparticles have a high adsorption capacity. Accordingly, by applying a dose of 0.2 g/l and contact time of 10 min, the three NPs yielded >90% removal efficiency. Also, for 1 min contact time, the percentage removal was 94.87%, 83.48% and 86.8% for RD-Fe, UD-Fe and TV-Fe, respectively. By an increase to 25 min, the removal percentage reached to 100% for TV-Fe and UD-Fe. Moreover, 30 min was required to remove Cr(VI) completely by RD-F.  相似文献   

10.
《Advanced Powder Technology》2020,31(9):4018-4030
This paper demonstrates functionalization of a new hybrid nanoclay for effective adsorption of chromium(VI) ions from wastewater. Halloysite nanotubes (HNTs) were functionalized by poly(amidoamine) dendritic polymers (HNTs-(DEN-NH2)) via a convergent synthetic route by carboxylic acid as a linkage. Various characterization methods confirm that poly(amidoamine) dendritic groups were effectively grafted onto the surface of HNTs that found a high specific surface area of 75 m2/g, as measured by micrometric BET analyzer. Moreover, the adsorption activity of HNTs-(DEN-NH2) for Cr(VI) was systematically investigated using a batch solution that reveals the removal efficiency of 98% for HNTs-(DEN-NH2) comparing to 23% for pristine HNTs, at optimum conditions. The enhancement of Cr(VI) removal for HNTs-(DEN-NH2) comparing to HNTs was mainly ascribed to be due to the electrostatic interaction, that was confirmed by the results of Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Moreover, regeneration studies display that HNTs-(DEN-NH2) can maintain removal Cr(VI) with high efficiency after four consecutive cycles.  相似文献   

11.
Dolochar, a waste material generated in sponge iron industry, is processed and put to test as an adsorbent for removal of Cd(II) and Cr(VI) ions from aqueous solutions. The dolochar samples were characterised to determine the different phases and their distribution by reflection microscopy. The analysis indicated that the sample consists of metallic iron, fused carbon, and Ca-Mg bearing phases (Ca-Mg-silicate-oxide) along with lots of voids and pores. The fixed carbon (FC) content of the material is 13.8% with a Langmuir surface area of 81.6 m2/g and micropore area of 34.1 m2/g. Batch adsorption experiments have been conducted to study the sorption behaviour of Cd(II) and Cr(VI) ions on dolochar as a function of particle size, contact time, adsorbent dosages, pH and temperature. It is observed that higher pH and temperature enhances sorption of Cd(II) ions. In contrast, the adsorption for Cr(VI) is found to be better in acidic pH in comparison to alkaline media. The equilibrium adsorption isotherm data are tested by applying both Langmuir and Freundlich isotherm models. It is observed that Langmuir isotherm model fitted better compared to the Freundlich model indicating monolayer adsorption. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° indicate the effectiveness of dolochar to remove Cd(II) and Cr(VI) ions from aqueous solution. The kinetics of adsorption is found to better fit to pseudo second order reaction.  相似文献   

12.
This paper describes the use of an integrated piezoelectric sensor/actuator (IPSA) layer to detect a delamination in a laminated composite beam by monitoring the sensor charge output (SCO) distributions along the beam of the first three order frequencies. For the sake of predicting the first three order frequencies and SCO distributions using the IPSA layer, a model-based delamination detection approach is presented. The corresponding dynamic analytical model that includes parameters characterizing delamination is developed using the classical beam theory and the assumption of constant peel and shear strains through the bond line thickness in bonded joint. Using the present analytical model, the effects of delamination length ld, delamination gap tg, actuator segment length la, actuator segment location Xa and electric field E on the SCO values are discussed. Finally, a comparison of the first three order frequencies between the present analytical and finite element analysis (FEA) models reveals that there is good agreement between these two models.  相似文献   

13.
A series of supported iron oxide nanoparticles were prepared by impregnation with Fe(NO3)3 supported on TiO2, followed by low-temperature calcination. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra and BET have been used to characterize the samples. These iron oxide-impregnated TiO2 were examined for photocatalytic reduction of Cr(VI). The experiments demonstrated that Cr(VI) in aqueous solution was more efficiently reduced using Fe2O3/TiO2 heterogeneous photocatalysts than either pure Fe2O3 or TiO2 under visible light irradiation. All TiO2 supported samples were somewhat active for visible light photoreduction. With an optimal mole ratio of 0.05-Fe/Ti, the highest rate of Cr(VI) reduction was achieved under the experimental conditions. We also compared the photoreactivity of TiO2 supported iron oxide samples with that supported on Al2O3 and ZrO2. It can be noted that iron oxide nanoparticles deposited on high surface area supports to increase the solid-liquid contact area renders it considerably more active. Noticeably, iron oxide cluster size and dispersion are important parameters in synthesizing active, supported Iron oxide nanoparticles. In addition, the interaction between iron oxide and TiO2 was proposed as the source of photoactivity for Cr(VI) reduction.  相似文献   

14.
A novel hybrid material prepared from graphene and poly (3,4-ethyldioxythiophene) (PEDOT) shows excellent transparency, electrical conductivity, and good flexibility, together with high thermal stability and is easily processed in both water and organic solvents. Conductivities of the order of 0.2 S/cm and light transmittance of greater than 80% in the 400–1800 nm wavelength range were observed for films with thickness of tens of nm. Practical applications in a variety of optoelectronic devices are thus expected for this transparent and flexible conducting graphene-based hybrid material. Electronic Supplementary Material  Supplementary material is available in the online version of this article at http://dx.doi.org/ and is accessible free of charge.  相似文献   

15.
Clamping force is a key element that alters the mechanism and sequence of failure in bolted joints of composite laminates. The mode of failure in bolted joints can be controlled by geometrical parameters and the preferred fail safe mode of failure is ‘bearing’ which generally consists of matrix cracks, delamination and fibre microbuckling. Three-dimensional (3-D) pinned (without clamping force) and bolted (1 kN clamping force) joint models were developed in [0/90]s carbon fibre reinforced plastic (CFRP) laminates to show the clamping force effect on the onset and growth of delamination. It is shown that delamination was resulted from the shear stress components (Mode II & III) at the interface and the contribution of the out-of-plane component (Mode I - opening), so the clamping force, was negligible without modelling the in-plane failure modes and their coupling with delamination, which will be considered in future work.  相似文献   

16.
In this study, we have synthesized high-quality carnation flower-like Bi2O2CO3 hierarchical architectures via a hydrothermal route. The as-synthesized Bi2O2CO3 photocatalyst was systematically characterized and analyzed by various techniques. Its photocatalytic activity was investigated by simulated-sunlight driving photoreduction of Cr(VI), revealing that it exhibits excellent photocatalytic removal of Cr(VI). The effects of various factors (H2SO4, NaOH, Cr(VI) concentration, catalyst dosage) on the photoreduction efficiency and involved mechanism were systematically investigated and discussed. In addition, we have also systematically examined the effects of various parameters (H2SO4 concentration, 1,5-diphenylcarbazide (DPC) concentration, Cr(VI) concentration, reaction time t and reaction temperature T) on the absorbance of the Cr(VI) solution, with the aim of correctly determining the Cr(VI) concentration according to UV–vis absorption measurements using DPC as the chromogenic agent.  相似文献   

17.
A novel cell separation and immobilization method for Cr (VI)-reduction under alkaline conditions was developed by using superparamagnetic Fe(3)O(4) nanoparticles (NPs). The Fe(3)O(4) NPs were synthesized by coprecipitation followed by modification with sodium citrate and polyethyleneimine (PEI). The surface-modified NPs were monodispersed and the particle size was about 15 nm with a saturation magnetization of 62.3 emu/g and an isoelectric point (pI) of 11.5 at room temperature. PEI-modified Fe(3)O(4) NPs possess positive zeta potential at pH below 11.5, presumable because of the high density of amine groups in the long chains of PEI molecules on the surface. At initial pH 9.0, Pannonibacter phragmitetus LSSE-09 cells were immobilized by PEI-modified NPs via electrostatic attraction and then separated with an external magnetic field. Compared to free cells, the coated cells not only had the same Cr (VI)-reduction activity but could also be easily separated from reaction mixtures by magnetic force. In addition, the magnetically immobilized cells retained high specific Cr (VI)-reduction activity over six batch cycles. The results suggest that the magnetic cell separation technology has potential application for Cr (VI) detoxification in alkaline wastewater.  相似文献   

18.
Alternanthera philoxeroides biomass, a type of freshwater macrophyte, was used for the sorptive removal of Ni(II), Zn(II) and Cr(VI) from aqueous solutions. Variables of the batch experiments include solution pH, contact time, particle size and temperature. The biosorption capacities are significantly affected by solution pH. Higher pH favors higher Ni(II), Zn(II) removal, whereas higher uptake of Cr(VI) is observed as the pH is decreased. A two-stage kinetic behavior is observed in the biosorption of Ni(II), Zn(II) and Cr(VI): very rapid initial biosorption in a few minutes, followed by a long period of a slower uptake. It is noted that an increase in temperature results in a higher Ni(II), Zn(II) and Cr(VI) loading per unit weight of the sorbent. Decreasing the particle sizes of the Alternanthera philoxeroides biomass leads to an increase in the Ni(II), Zn(II) and Cr(VI) uptake per unit weight of the sorbent. All isothermal data are fairly well fitted with Langmuir equations. The thermodynamic parameter, DeltaG degrees, were calculated. The negative DeltaG degrees values of Cr(VI), Ni(II) and Zn(II) at various temperatures confirm the adsorption processes are spontaneous.  相似文献   

19.
In this study, flake-like polyaniline/montmorillonite (PANI/MMT) nanocomposites with rough surface were successfully prepared by in situ chemical oxidation polymerization during which poly(2-acrylamido-2-methylpropanesulfonic acid), a polymer acid, on the surface of clay platelets was used as dopant of PANI and played a ‘bridge’ role to combine PANI with clay. Flake thickness and surface roughness of PANI/MMT composites decreased with the increase of montmorillonite/aniline feeding ratio. The effects of operating parameters including pH, contact time, Cr(VI) concentration, and adsorbent dose were studied. The pseudo-second-order equation and three adsorption isotherms including Langmuir, Freundlich, and Temkin equations were applied to determine the adsorption rate and capacity. The results show that the flake-like PANI/MMT nanocomposites exhibited a high adsorption capacity (167.5 mg/g). The excellent adsorption characteristic of flake-like PANI/MMT nanocomposites will render it a highly efficient and economically viable adsorbent for Cr(VI) removal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号