共查询到10条相似文献,搜索用时 0 毫秒
1.
Mikio Yoshida Tatsuki Katayama Ryota Kikuchi Jun Oshitani Kuniaki Gotoh Atsuko Shimosaka Yoshiyuki Shirakawa 《Advanced Powder Technology》2019,30(1):156-163
Particle flowability can be improved by admixing with particles smaller than the main particles. However, the mechanism by which this technique improves flowability is not yet fully understood. In this study, we focused on vibrating discharge particle flowability as one type of flowability and investigated the influence of the main particle roughness created by the adhesion of the admixed particles on improving the flowability. The diameters of the main and admixed particles (MPs and APs) were 41.4 or 60.8?μm and 8 or 104?nm, respectively. The main and admixed particles were mixed in various mass ratios, and the discharge particle flow rates of the mixed particles were measured. Scanning electron microscopy images were acquired from two different angles to determine the three-dimensional surface roughness using image analysis software. We then calculated the coating structure parameters from the obtained three-dimensional surface roughness. The observed trends for improving the vibrating discharge particle flowability were found to differ from those reported for compression particle flowability. Furthermore, the main particle roughness conditions that led to the greatest improvement involved the presence of several admixed particle agglomerations between the main particles. 相似文献
2.
Additive manufacturing (AM) has attracted much attention worldwide in various applications due to its convenience and flexibility to rapidly fabricate products, which is a key advantage compared to the traditional subtractive manufacturing. This discrete element method (DEM) study focusses on the impact of particle polydispersity during the particle spreading process on parameters that affect the quality of the final product, like packing and bed surface roughness. The particle systems include four lognormal particle size distribution (PSD) widths, which are benchmarked against the monodisperse system with the same mean particle diameter. The results reveal that: (i) the solid volume fraction of the initial packed particle bed in the delivery chamber increases then plateaus as the PSD width increases; (ii) regardless of PSD width, the solid volume fraction of the particle bed increases with spreading layer height before compression, but decreases with layer height after compression; (iii) the bed surface roughness increases with PSD width or layer height both before and after the compression of the spreading layer; (iv) the extent of increase in solid volume fraction during compression is correlated with the extent of decrease in bed surface roughness; and (v) the broader PSDs exhibit larger fluctuations of solid volume fraction of the particle bed and bed surface roughness due to greater variability in the arrangement of particles of different sizes. The results here have important implications on the design and operation of particle-based AM systems. 相似文献
3.
E. Diez P. Kieckhefen K. Meyer A. Bück E. Tsotsas S. Heinrich 《Advanced Powder Technology》2019,30(10):2014-2031
This work studies the particle exchange rates in horizontal fluidized beds equipped with different weir designs between compartments. These particle exchange rates provide information on the axial dispersion of the solid material within the process. For this purpose discrete particle modelling (DPM) was used to determine the particle exchange on microscopic level. This method uses a coupled CFD-DEM approach to observe particle dynamics in a fluid field. The model was validated against exchange rates in a lab-scale setup as determined by Particle Tracking Velocimetry (PTV) with very good quantitative agreement, showing the suitability of the method for the evaluation of weir designs. Simulations were performed for different weir designs and under variation of the hold-up mass, the feed rate and gas velocity to predict their transport behavior in a pilot-scale 3D horizontal fluidized bed. The results indicate that the solids transport behavior is strongly dependent on the used weir design and the main driving force for the particle transport that can be influenced by the process conditions. The installation of weirs between two compartments induces a transport resistance, while the base type without the installation of a weir between the two chambers represents the fastest possibility for mixing the particles of a two-compartment system. It has been observed that the general trend shows higher particle recirculation rates for the overflow weir and base configuration (no weir), whereas the underflow and sideflow weir applications improve the solids transport through the horizontal fluidized bed. 相似文献
4.
5.
Feng Wu Zeyu Yu Lingyi Shang Xiaoxun Ma Wenjing Zhou 《Advanced Powder Technology》2019,30(10):2178-2187
A spouted bed with longitudinal vortex generator (LVG) of sphere was built to enhance radial movement of particles. Particle Image Velocimetry (PIV) was applied to explore effects of longitudinal vortex flow and physical properties of particles on their radial velocity in a 152-mm-diametered spouted bed. The results show that, Compared with the conventional spouted bed, the existence of longitudinal vortex generator gives rise to a large amount of secondary fine vortex flow in the cross section of spouted bed. The enhancement factors of particles movement η with different particle densities are all greater than 1. The smaller the particle density, the more significant the effect of the longitudinal vortex on the radial velocity of the particles. The single-row LVGs can produce a good radial enhancement effect of particle movement when the particle handling capacity is small (H0 = 165 mm). With the increase of the height of the static bed (H0), the enhancement of the radial velocity of particles in the spouted bed by multi-row LVGs (three rows) increases gradually, which indicates that the multi-row LVGs have a better overall effect on the enhancement of particle motion in the spouted bed with more particle handling capacity (H0 = 195 mm, 225 mm). 相似文献
6.
Sujan Kumar Bashapaka 《Particulate Science and Technology》2019,37(4):387-398
Experimental and modeling studies have been performed to determine mixing characteristics of binary mixtures in a spout-fluid bed. Spherical glass beads of diameters (3.075, 1.7, 1.2, and 0.75?mm) and air as fluidizing medium have been used in the study. Effect of various system parameters, namely, initial static bed height, gas velocity, diameter ratio, mixture composition, and sampling time on mixing of binary particles has been experimentally investigated. A dimensionless correlation has been developed for mixing index. Mixing behavior has been modeled using artificial neural networks (ANNs). Training of ANN was performed using the Levenberg–Marquardt (LM) backpropagation algorithm to predict the mixing index. The predictions of the ANN were found to be in good agreement with the experimental results and predictions from developed correlations. 相似文献
7.
Alaa M. Ali Ahmed S. Abo Dena Magdi H. Yacoub 《Drug development and industrial pharmacy》2013,39(7):1149-1156
Dry powder inhalers (DPIs) are considered a main drug delivery system through pulmonary route. The main objective of this work is to study the flow of differently shaped microparticles in order to find the optimum shape of drug particles that will demonstrate the best flow to the deep lung. The flowability of particles in air or any fluid depends particularly on the drag force which is defined as the resistance of the fluid molecules to the particle flow. One of the most important parameters that affect the drag force is the particles’ shape. Computational simulations using COMSOL Multi Physics 5.2 software were performed for investigating the particles flow in the air pathways of lung, and the drag force was calculated for different particles shapes. This was accomplished by screening a set of 17 possible shapes that are expected to be synthesized easily in the micro-scale. In addition, the macro-scale behavior of the investigated shapes was also simulated so as to compare the behavior of the flowing particles in both cases. A very big difference was found between the behavior of particles’ flow in the micro and macro scales, but a similar behavior can be obtained if the flow velocity of the microparticles is very high. It was also found that the micro-triangle with aspect ratio 2:1 has the least drag force in both deep and upper lung; so, it should be the shape of choice during the process of particle synthesis for pulmonary drug delivery. 相似文献
8.
Sifan Peng Yujia Liu Nan Gui Xingtuan Yang Jiyuan Tu Shengyao Jiang 《Advanced Powder Technology》2021,32(3):646-659
In this work, the discharging process of the binary mixture composed of sphere and sphere-paired particles in a two-dimensional silo was studied. High-speed camera and self-developed particle tracking velocimetry (PTV) program were used to capture the flow behaviors of all particles. The key parameters of mixed flow, including coordination number, horizontal displacement and mechanical energy loss in the discharge process, were highlighted. It was found that the increase of sphere-paired particles can decrease the average coordination number of particles during the discharging process. The analysis about the loss of mechanical energy and the horizontal displacement of particles indicated that sphere-paired particles preferentially squeezed out sphere particles from fast flow field above the outlet. Moreover, an empirical formula was proposed to assess the influence of the proportion of sphere-paired particles on the discharge flow rate. Sphere-paired particles tended to hinder the discharging process, which was caused by the rotation around their centroids and the angular deflection close to angle of the hopper. 相似文献
9.
通过模拟实验,考察了采用多个仪表显示的监控作业中信号检察反应时间与信源数量的关系。信源数量的变化范围为2-8个同时呈现的仪表,每种实验条件下的监控作业持续80min,等分为4个时间段,每个时间段为20min。实验结果表明:信源数量对信号检察反应时间有明显影响,随着信源数量的增加,反应时间也随之延长;信源数量与时间段之间存在着显的交互作用,信源数量越多,各时间段之间的差异也越大。 相似文献
10.
The complex mixed feeding process for the binary mixture of coal and cylindroid biomass particles in a screw feeder was numerically studied by the discrete element method (DEM). The effects of biomass feeding ratio, feeding rate, and screw rotational speed on the feeding performance were investigated with the continuity, uniformity, and stability of the mixed feeding process being emphatically discussed. The results reveal that the stability of real-time mass flow rate and biomass blending ratio performs better at higher biomass feeding ratios. A larger variability of real-time biomass blending ratio is found at low feeding rate, while increasing the feeding rate reduces the stability of real-time mass flow rate and the too high feeding rate would cause some cylindroid biomass particles being hindered by the front wall surface of the hopper. Moreover, increasing the screw rotational speed significantly increases the stability of the mixed feeding process. 相似文献