首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Inorganic–organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon‐absorbing devices mainly because of their superb optoelectronic properties. However, high‐definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high‐resolution spin‐on‐patterning (SoP) process. This fast and facile process is compatible with a variety of spin‐coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high‐performance, ultrathin, and deformable perovskite‐on‐silicon multiplexed image sensor array, paving the road toward next‐generation image sensor arrays.  相似文献   

2.
Metal halide perovskite thin films can be crystallized via a broad range of solution‐based routes. However, the quality of the final films is strongly dependent upon small changes in solution composition and processing parameters. Here, this study demonstrates that a fractional substitution of PbCl2 with PbI2 in the 3CH3NH3I:PbCl2 mixed‐halide starting solution has a profound influence upon the ensuing thin‐film crystallization. The presence of PbI2 in the precursor induces a uniform distribution of regular quadrilateral‐shaped CH3NH3PbI3 perovskite crystals in as‐cast films, which subsequently grow to form pinhole‐free perovskite films with highly crystalline domains. With this new formulation of 3CH3NH3I:0.98PbCl2:0.02PbI2, this study achieves a 19.1% current–voltage measured power conversion efficiency and a 17.2% stabilized power output in regular planar heterojunction solar cells.  相似文献   

3.
Cesium lead halide perovskites are of interest for light‐emitting diodes and lasers. So far, thin‐films of CsPbX3 have typically afforded very low photoluminescence quantum yields (PL‐QY < 20%) and amplified spontaneous emission (ASE) only at cryogenic temperatures, as defect related nonradiative recombination dominated at room temperature (RT). There is a current belief that, for efficient light emission from lead halide perovskites at RT, the charge carriers/excitons need to be confined on the nanometer scale, like in CsPbX3 nanoparticles (NPs). Here, thin films of cesium lead bromide, which show a high PL‐QY of 68% and low‐threshold ASE at RT, are presented. As‐deposited layers are recrystallized by thermal imprint, which results in continuous films (100% coverage of the substrate), composed of large crystals with micrometer lateral extension. Using these layers, the first cesium lead bromide thin‐film distributed feedback and vertical cavity surface emitting lasers with ultralow threshold at RT that do not rely on the use of NPs are demonstrated. It is foreseen that these results will have a broader impact beyond perovskite lasers and will advise a revision of the paradigm that efficient light emission from CsPbX3 perovskites can only be achieved with NPs.  相似文献   

4.
Organometal halide perovskites are new light‐harvesting materials for lightweight and flexible optoelectronic devices due to their excellent optoelectronic properties and low‐temperature process capability. However, the preparation of high‐quality perovskite films on flexible substrates has still been a great challenge to date. Here, a novel vapor–solution method is developed to achieve uniform and pinhole‐free organometal halide perovskite films on flexible indium tin oxide/poly(ethylene terephthalate) substrates. Based on the as‐prepared high‐quality perovskite thin films, high‐performance flexible photodetectors (PDs) are constructed, which display a nR value of 81 A W?1 at a low working voltage of 1 V, three orders higher than that of previously reported flexible perovskite thin‐film PDs. In addition, these flexible PDs exhibit excellent flexural stability and durability under various bending situations with their optoelectronic performance well retained. This breakthrough on the growth of high‐quality perovskite thin films opens up a new avenue to develop high‐performance flexible optoelectronic devices.  相似文献   

5.
6.
钙钛矿型铁电薄膜疲劳性能研究进展   总被引:3,自引:0,他引:3  
钙钛矿型铁电薄膜由于在非易失存储器方面的应用而受到广泛研究,但疲劳问题是影响其应用的主要障碍。简要综述了近年来国外在钙钛矿型铁电薄膜疲劳机制和消除疲劳措施等方面的研究进展。  相似文献   

7.
8.
采用一步溶液法制备了锡钙钛矿电池薄膜,研究了前驱体溶液浓度、退火温度和掺杂对薄膜成膜性能的影响。分别利用扫描电镜(SEM)、XRD和傅里叶红外光谱仪(FTIR)对薄膜的形貌、物相、吸收率和禁带宽度进行表征和测试。研究结果表明,当前驱体溶液浓度为30%、退火温度为100℃时的成膜性能较好,所制备的钙钛矿薄膜更加平整和光滑,覆盖率较高。CH_3NH_3SnI_3成分的钙钛矿薄膜具有最低的禁带宽度,其吸光性能优于其他成分的钙钛矿薄膜。掺杂Br、Cl离子会导致CH_3NH_3SnI_3成分的钙钛矿薄膜的禁带宽度增加,而吸光性能和结晶性能降低。  相似文献   

9.
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has now exceeded 20%; thus, research focus has shifted to establishing the foundations for commercialization. One of the pivotal themes is to curtail the overall fabrication time, to reduce unit cost, and mass‐produce PSCs. Additionally, energy dissipation during the thermal annealing (TA) stage must be minimized by realizing a genuine low‐temperature (LT) process. Here, tin oxide (SnO2) thin films (TFs) are formulated at extremely high speed, within 5 min, under an almost room‐temperature environment (<50 °C), using atmospheric Ar/O2 plasma energy (P‐SnO2) and are applied as an electron transport layer of a “n–i–p”‐type planar PSC. Compared with a thermally annealed SnO2 TF (T‐SnO2), the P‐SnO2 TF yields a more even surface but also outstanding electrical conductivity with higher electron mobility and a lower number of charge trap sites, consequently achieving a superior PCE of 19.56% in P‐SnO2‐based PSCs. These findings motivate the use of a plasma strategy to fabricate various metal oxide TFs using the sol–gel route.  相似文献   

10.
11.
Whether or not methylammonium lead iodide (MAPbI3) is a ferroelectric semiconductor has caused controversy in the literature, fueled by many misunderstandings and imprecise definitions. Correlating recent literature reports and generic crystal properties with the authors' experimental evidence, the authors show that MAPbI3 thin‐films are indeed semiconducting ferroelectrics and exhibit spontaneous polarization upon transition from the cubic high‐temperature phase to the tetragonal phase at room temperature. The polarization is predominantly oriented in‐plane and is organized in characteristic domains as probed with piezoresponse force microscopy. Drift‐diffusion simulations based on experimental patterns of polarized domains indicate a reduction of the Shockley–Read–Hall recombination of charge carriers within the perovskite grains due to the ferroelectric built‐in field and allow reproduction of the electrical solar cell properties.  相似文献   

12.
Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub‐micrometer sized crystals via solid‐state dewetting represents a viable method for the fabrication of quantum dots and optical meta‐surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si‐ and SiGe‐based nanocrystals by templated solid‐state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning).  相似文献   

13.
分别将银纳米相溶胶(银纳米颗粒、Ag@SiO2核壳结构、银纳米线)掺入氧化铝异丙醇溶液中制成具有蜂窝结构的介孔层材料, 然后在介孔层表面制备CH3NH3PbI3钙钛矿吸收层得到Al2O3/CH3NH3PbI3复合薄膜, 并对复合膜的微观结构、光吸收特性及太阳电池器件性能进行了测试和分析。研究表明, Al2O3/CH3NH3PbI3复合膜与CH3NH3PbI3在可见光区域吸收光谱基本相同, 含量极少的Al2O3对CH3NH3PbI3吸光性能影响较小。而掺入银纳米相可明显改善CH3NH3PbI3钙钛矿薄膜的吸收性能。当银纳米颗粒、Ag@SiO2核壳结构和银纳米线相对浓度比分别为0.15、0.3及0.15时, CH3NH3PbI3吸光性能分别达到最佳; 银纳米相浓度继续增大时, 薄膜的光吸收性能逐渐减弱。此外, 掺入Ag@SiO2核壳结构可使钙钛矿薄膜太阳电池光电转换效率由6.28%增大到7.09%, 而银纳米颗粒和银纳米线由于会增大太阳电池内部载流子传输路径, 提高电子空穴对复合效率, 最终反而降低了太阳电池短路电流密度和光电转换效率。  相似文献   

14.
Despite the recent advances in the performance of perovskite light‐emitting diodes (PeLEDs), the effects of water on the perovskite emissive layer and its electroluminescence are still unclear, even though it has been previously demonstrated that moisture has a significant impact on the quality of perovskite films in the fabrication process of perovskite solar cells and is a prerequisite for obtaining high‐performance PeLEDs. Here, the effects of postmoisture on the luminescent CH3NH3PbBr3 (MAPbBr3) perovskite films are systematically investigated. It is found that postmoisture treatment can efficiently control the morphology and growth of perovskite films and only a fast moisture exposure at a 60% high relative humidity results in significantly improved crystallinity, carrier lifetime, and photoluminescence quantum yield of perovskite films. With the optimized moisture‐treated perovskite films, a high‐performance PeLED is fabricated, exhibiting a maximum current efficiency of 20.4 cd A?1, which is an almost 20‐fold enhancement when compared with perovskite films without moisture treatment. The results provide valuable insights into the moisture‐assisted growth of luminescent perovskite films and will aid in the development of high‐performance perovskite light‐emitting devices.  相似文献   

15.
Developing environmentally friendly perovskites has become important in solving the toxicity issue of lead‐based perovskite solar cells. Here, the first double perovskite (Cs2AgBiBr6) solar cells using the planar structure are demonstrated. The prepared Cs2AgBiBr6 films are composed of high‐crystal‐quality grains with diameters equal to the film thickness, thus minimizing the grain boundary length and the carrier recombination. These high‐quality double perovskite films show long electron–hole diffusion lengths greater than 100 nm, enabling the fabrication of planar structure double perovskite solar cells. The resulting solar cells based on planar TiO2 exhibit an average power conversion efficiency over 1%. This work represents an important step forward toward the realization of environmentally friendly solar cells and also has important implications for the applications of double perovskites in other optoelectronic devices.  相似文献   

16.
Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large‐scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)‐rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb–Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less‐toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point.  相似文献   

17.
Large‐scale high‐quality perovskite thin films are crucial to produce high‐performance perovskite solar cells. However, for perovskite films fabricated by solvent‐rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low‐temperature soft‐cover deposition (LT‐SCD) method is presented, where the thermal convection‐induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection‐induced‐defects‐free perovskite films are obtained on an area of 12 cm2, which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm2. This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low‐temperature processing. Hence, the present LT‐SCD technology provides a new non‐spin‐coating route to the deposition of large‐area uniform perovskite films for both rigid and flexible perovskite devices.  相似文献   

18.
19.
20.
In this study, a facile and effective approach to synthesize high‐quality perovskite‐quantum dots (QDs) hybrid film is demonstrated, which dramatically improves the photovoltaic performance of a perovskite solar cell (PSC). Adding PbS QDs into CH3NH3PbI3 (MAPbI3) precursor to form a QD‐in‐perovskite structure is found to be beneficial for the crystallization of perovskite, revealed by enlarged grain size, reduced fragmentized grains, enhanced characteristic peak intensity, and large percentage of (220) plane in X‐ray diffraction patterns. The hybrid film also shows higher carrier mobility, as evidenced by Hall Effect measurement. By taking all these advantages, the PSC based on MAPbI3‐PbS hybrid film leads to an improvement in power conversion efficiency by 14% compared to that based on pure perovskite, primarily ascribed to higher current density and fill factor (FF). Ultimately, an efficiency reaching up to 18.6% and a FF of over ≈0.77 are achieved based on the PSC with hybrid film. Such a simple hybridizing technique opens up a promising method to improve the performance of PSCs, and has strong potential to be applied to prepare other hybrid composite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号