首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.  相似文献   

2.
Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. In this investigation, an attempt was made to determine a suitable consumable to replace expensive austenitic consumables. Two different consumables, namely, austenitie stain less steel and low hydrogen ferritic steel, were used to fabricate the joints by shielded metal are welding (SMAW) and flux cored arc welding (FCAW) processes. The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties, whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness, irrespective of the welding process used. The SMAW joints exhibited superior mechanical and impact properties, irrespective of the consumables used, than their FCAW counterparts.  相似文献   

3.
Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.  相似文献   

4.
《钢铁冶炼》2013,40(1):50-62
Abstract

Austenitic stainless steel (ASS) welding consumables are being used for welding armour grade Q&T steels, as they have higher solubility for hydrogen in the austenitic phase, to avoid hydrogen induced cracking (HIC). Even with austenitic stainless steel consumables under high dilution, the risk of HIC prevailed. In recent years, the developments of low hydrogen ferritic steel (LHF) consumables that contain no hygroscopic compounds are utilised for welding Q&T steels. The use of ASS fillers for welding armour grade Q&T steels creates a duplex microstructure (austenite and δ ferrite) in the welds, which drastically reduces the joint efficiency (ratio of ultimate tensile strength of the joint and the base metal). On the other hand, the weld made using LHF fillers exhibited superior joint efficiency due to the preferential ferrite microstructure in the welds. The use of ASS and LHF consumables for armour grade Q&T steels will lead to formation of distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence on the dynamic fracture toughness of the armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence on the welding consumables and processes on the dynamic fracture toughness properties of armour grade Q&T steel joints. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for fabrication of the joints using ASS and LHF welding consumables. The joints fabricated by SMAW process using ASS consumables exhibited superior dynamic fracture toughness values compared to all other joints.  相似文献   

5.
Transition joints between ferritic steel and austenitic stainless steel are commonly encountered in high-temperature components of power plants. Service failures in these are known to occur as a result, mainly, of thermal stresses due to expansion coefficient differentials. In order to mitigate the problem, a trimetallic configuration involving an intermediate piece of a material such as Alloy 800 between the ferritic and austenitic steels has been suggested. In our work, modified 9Cr-1Mo steel and 316LN stainless steel are used as the ferritic and austenitic components and the thermal behavior of the joints between modified 9Cr-1Mo steel and Alloy 800 is described in this article. The joints, made using the nickel-base filler material INCONEL 82/182 (INCONEL 82 for the root pass by gas-tungsten arc welding and INCONEL 182 for the filler passes by shielded-metal arc welding), were aged at 625 °C for periods up to 5000 hours. The microstructural changes occurring in the weld metal as well as at the interfaces with the two parent materials are characterized in detail. Results of across-the-weld hardness surveys and cross-weld tension tests and weld metal Charpy impact tests are correlated with the structural changes observed. Principally, the results show that (1) the tendency for carbon to diffuse from the ferritic steel into the weld metal is much less pronounced than when 2.25Cr-1Mo steel is used as the ferritic part; and (2) intermetallic precipitation occurs in the weld metal for aging durations longer than 2000 hours, but the weld metal toughness still remains adequate in terms of the relevant specification.  相似文献   

6.
The fatigue crack propagation rate (FCPR) in 316L austenitic stainless steel (ASS) and its weldments was investigated, at two loading amplitudes, 7 and 8.5 kN, under tension-tension mode. Two welding techniques, submerged arc welding (SAW) and manual arc welding (MAW), have been used. Magnetic δ-ferrite, depending upon Ni and Cr content in the metal, in the weld zone upon solidification was considered. The ferrite number (FN) of δ-ferrite formed in the SAW zone was much higher (maximum 9.6) compared to the corresponding value (maximum 0.75) in the MAW zone. A fatigue starter notch was positioned at different positions and directions with respect to the weld zone, in addition to the heat-affected zone (HAZ). Regions of high and low FCPRs as the fatigue crack propagated through and across the weld zone have been noticed. This is related to the direction of the tensile residual stresses present in weld zone, resulting from solidification of the weld metal. The FCPR was higher along through the HAZ and weld zone because of the microstructural change and direction and distribution of tensile residual stresses. The FCPR was much lower when crack propagated perpendicular to the weld zone, particularly in the case of SAW in which higher δ-ferrite volume fraction was noticed. A lower FCPR found across the weld zone, in both SAW and MAW, was accompanied by rubbed areas in their fractures.  相似文献   

7.
利用激光焊接工艺焊接核级不锈钢,通过改变激光焊接速度得到不同的焊接接头.采用金相显微镜、扫描电子显微镜等手段研究了熔深比、δ/γ比、组织形貌以及焊缝中各相的成分.通过显微硬度测试了焊缝接头上硬度分布.随着焊接速度的增加,焊缝熔深比线性增加,焊缝中δ-铁素体含量增加,岛状组织增多,板条状组织增多,蠕虫状组织减少,焊缝区的平均硬度值增加.   相似文献   

8.
 采用钨极氩弧焊和手工电弧焊焊接316L/X65双金属复合管。利用光学显微镜、能谱仪、扫描电镜、力学性能测试及电化学测试等分析手段研究了复合管焊接接头的微观结构、化学成分、力学性能及电化学腐蚀性能。结果表明,过渡层焊缝的化学成分受到稀释较小,过渡层熔合线附近出现了元素迁移,不锈钢层焊缝与母材的化学成分基本一致;扩散层为类马氏体+残留奥氏体,过渡层和不锈钢层焊缝均为奥氏体+少量铁素体;在试验参数下,焊接接头各项力学性能优良、无缺陷;覆层焊缝与母材的电化学腐蚀性能相差极小。  相似文献   

9.
 The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by ANSI/AWS F12 methods. Particle characterization was performed with SEM-XEDS and XRF analysis to reveal the particle morphology and chemical composition of the fume particles. The SEM analysis reveals the morphology of particles having three distinct shapes namely spherical, irregular, and agglomerated. Spherical particles were the most abundant type of individual particle. All the fume particle size falls in the range of less than 100 nm. Mechanical properties (strength, hardness and toughness) and microstructural analysis of the weld deposits were evaluated. It is found that heat input of 115 kJ/mm is beneficial to weld stainless steel by GMAW process due to lower level of welding fume emissions and superior mechanical properties of the joints.  相似文献   

10.
刘东升  程丙贵  罗咪  曲锦波 《钢铁》2021,56(3):92-102
 为开发大型集装箱船用特厚EH47止裂钢板,提出了一种低碳微合金MnCrNiCu钢,研究了其变形奥氏体连续冷却相变规律,使用控轧控冷工艺(TMCP)试制出最大厚度为85 mm特厚EH47级钢板,使用埋弧焊(SMA)和药芯焊丝气保焊(FCAW)技术对最厚钢板进行焊接试验,研究钢板和焊接接头的显微组织和性能。通过系列V缺口Charpy(CVN)示波冲击试验研究钢板的韧脆转变行为,获得各部位的韧脆转变温度(DBTT)及其解理断裂强度σf;测试了钢板及热影响区粗晶区(CGHAZ)全厚度截面的组织和CVN韧性,测试了-10 ℃的裂纹张开位移(CTOD)及其启裂韧性(Kc);通过系列温度梯度宽板双重拉伸(DT)试验,获得了钢板的止裂韧性(Kca)与温度之间的关系。结果表明,钢板的显微组织由铁素体(PF)、针状铁素体(AF)和弥散分布的马氏体奥氏体(MA)组成;随着精轧压下率和冷却速率逐渐提高,大角度晶界分数逐渐增大,DBTT随之降低;CVN试样和DT试样具有相同的解理断裂临界事件;FCAW CGHAZ由粒状贝氏体(GB)+MA组元为主,SMA CGHAZ由AF+准多边形铁素体(QPF)+MA组元为主,前者Kc低于后者,更容易萌生解理断裂;钢板-10 ℃的Kca为7 140 N/mm3/2,具备止裂性能。  相似文献   

11.
The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.  相似文献   

12.
In the present investigation, the effect of base plate and filler wire composition as well as of welding conditions on δ-ferrite contents and toughness of austenitic-ferritic stainless steel weld metal has been established. According to previous work, the δ-ferrite contents are not only depending on chemical composition but also on cooling conditions of the weld metal. The application of δ-γ-CCT diagrams is recommended. Increasing δ-ferrite contents lower the CVN toughness of the weld metal, which should be taken into consideration before recommending filler materials and welding conditions.  相似文献   

13.
 采用CO2焊接方法焊接X100管线钢,分析了不同焊接工艺下焊接接头组织和性能的变化特征。随着焊接热输入的增加,焊接接头的屈服强度和抗拉强度降低,焊缝和热影响区处的冲击吸收功呈现先增大后减小的变化趋势,而焊缝组织均以针状铁素体(AF)为主。焊接热输入为1.17 kJ/mm时,粗晶区的显微组织主要是贝氏体铁素体(BF),强韧匹配性最为优异;当热输入增加至1.91 kJ/mm时,粗晶区的组织除了BF外,还出现了粒状贝氏体(GB),强韧水平明显降低。综合考虑,可将1.17 kJ/mm作为X100管线钢CO2焊接时的最佳热输入。  相似文献   

14.
An analysis of the girth weldability of Baosteel X80 UOE (U-ing-O-ing-Expanding) linepipes was conducted using manual shielded metal arc welding (SMAW) and semiautomatic self-shielded flux cored wire arc welding (FCAW).A technical specification for the optimum quality of a girth welding joint was obtained through a large amount of testing.According to the requirements of America Petroleum Institute(API) standard 1104 and the standards of the 2nd West-East natural gas transmission pipeline project,the mechanical properties of a girth welding joint were estimated.In addition,the effect of the girth welding procedure specifications and the consumable’s suitability on the impact toughness of the girth welding joint was discussed.  相似文献   

15.
Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.  相似文献   

16.
Shielded metal arc welding (SMAW) and metal inert gas (GMAW) welding process are the two most widely used welding processes. These processes are widely used for the construction and fabrication purpose in almost all type of industries. Some of the important factors which govern the weld quality in these welding processes are welding power sources, role of shielding gas (for GMAW process), welding consumables and skill of the welders. Currently, effects of these factors are evaluated by examining the quality of the weld produced and not by monitoring how welding process is affected by change in these factors. This is an indirect method because actual contribution made by individual parameter in physical process is effectively ignored. Further, this is expensive and time-consuming as the assessment can be carried out only after the weld is completed. Hence, a procedure to assess the quality of welding process using the data acquired while welding is in progress is preferred to testing of the weld for this purpose. In both SMAW and GMAW processes, welding speed, voltage and current are important parameters that affect the quality of the welds. Among these, monitoring of welding speed is relatively easy; but monitoring voltage and current is not. This is because, welding is a stochastic process in which wide variation in voltage and current occurs and duration of these variations is so short that they are not observed in the voltage and current displayed in the power source. However, with the help of a high-speed data acquisition system, voltage and current variations during actual welding process can be recorded and subsequently analysed to reveal very useful information on the welding process, and subsequently quality analysis of individual welding parameters can also be done. In the present study, the voltage and current signals acquired using a digital storage oscilloscope have been used to study SMAW and GMAW processes. Data was acquired for duration of 20 s at a sampling rate of 100,000 samples/s while welding is in progress. In the case of SMAW process, welding data was acquired for welds made using different welding power sources, but with same welder and same type of electrode. In the case of GMAW process, welds were made using same wire and same welder but with different gases for shielding and at different set currents. Dynamic variation in the voltage and current signals were carefully studied using time domain and statistical analyses. Results showed that differences in the characteristics of the different power sources used for SMAW process and effect of shielding gases and arc current on GMAW process could be easily revealed by such analysis. For SMAW process, results obtained could also be correlated with the appearance of the weld beads. Hence, a procedure involving high-speed data acquisition of voltage and current signal while welding is in progress and the statistical analysis of the acquired data have been proposed for monitoring of these two arc welding processes.  相似文献   

17.
喇培清  姚亮  孟倩  周毛熊  魏玉鹏 《钢铁》2013,48(11):60-66
 对加Al质量分数为4%的304、2%的316L不锈钢热轧板材的焊接性能进行了研究。采用手工氩弧焊(TIG)的焊接方法,利用光学显微镜对焊缝的显微组织进行分析,利用电子探针(EMPA)分析焊接母材的元素分布,并对焊接接头进行力学性能测试。组织和力学性能的研究结果表明:含铝304和含铝316L合金热轧板分别选用ER308L,ER316L作为焊接材料,经TIG焊接后,焊缝无裂纹、气孔等缺陷,接头具有良好的强度和塑性,焊接接头力学性能接近于其母材;热影响区组织与母材组织基本一致,焊缝与母材熔合良好,组织良好,加铝304和316L不锈钢具有良好的焊接性能。  相似文献   

18.
Evaluations of creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb steels with Alloy 800 at 823 K were carried out. The joints were fabricated by a fusion welding process employing an INCONEL 182 weld electrode. All the joints displayed lower creep rupture strength than their respective ferritic steel base metals, and the strength reduction was greater in the 2.25Cr-1Mo steel joint and less in the 9Cr-1Mo steel joint. Failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of the heat-affected zone (HAZ) of the ferritic steel (type IV cracking) with the decrease in stress. At still lower stresses, the failure in the joints occurred at the ferritic/austenitic weld interface. The stress-life variation of the joints showed two-slope behavior and the slope change coincided with the occurrence of ferritic/austenitic weld interface cracking. Preferential creep cavitation in the soft intercritical HAZ induced type IV failure, whereas creep cavitation at the interfacial particles induced ferritic/austenitic weld interface cracking. Micromechanisms of the type IV failure and the ferritic/austenitic interface cracking in the dissimilar weld joint of the ferritic steels and relative cracking susceptibility of the joints are discussed based on microstructural investigation, mechanical testing, and finite element analysis (FEA) of the stress state across the joint.  相似文献   

19.
A comparative evaluation of the low-cycle fatigue (LCF) behavior of type 316LN base metal, 316 weld metal, and 316LN/316 weld joints was carried out at 773 and 873 K. Total strain-controlled LCF tests were conducted at a constant strain rate of 3 × 10−3 s−1 with strain amplitudes in the range ±0.20 to ±1.0 pct. Weld pads with single V and double V configuration were prepared by the shielded metal-arc welding (SMAW) process using 316 electrodes for weld-metal and weld-joint specimens. Optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) of the untested and tested samples were carried out to elucidate the deformation and the fracture behavior. The cyclic stress response of the base metal shows a very rapid hardening to a maximum stress followed by a saturated stress response. Weld metal undergoes a relatively short initial hardening followed by a gradual softening regime. Weld joints exhibit an initial hardening and a subsequent softening regime at all strain amplitudes, except at low strain amplitudes where a saturation regime is noticed. The initial hardening observed in base metal has been attributed to interaction between dislocations and solute atoms/complexes and cyclic saturation to saturation in the number density of slip bands. From TEM, the cyclic softening in weld metal was ascribed to the annihilation of dislocations during LCF. Type 316LN base metal exhibits better fatigue resistance than weld metal at 773 K, whereas the reverse holds true at 873 K. The weld joint shows the lowest life at both temperatures. The better fatigue resistance of weld metal is related to the brittle transformed delta ferrite structure and the high density of dislocations at the interface, which inhibits the growth rate of cracks by deflecting the crack path. The lower fatigue endurance of the weld joint was ascribed to the shortening of the crack initiation phase caused by surface intergranular crack initiation and to the poor crack propagation resistance of the coarse-grained region in the heat-affected zone.  相似文献   

20.
Dissimilar metal welding between the austenitic stainless steel and micro-alloyed steel was widely used in high-temperature applications in power stations and petrochemical plants. In the current research, the dissimilar metals between austenitic stainless steel and micro-alloyed steel have been joined by shielded metal arc welding (SMA), gas metal arc welding (GMA), and pulse gas metal arc welding (PGMA) processes. Welded samples of the aforementioned processes were subjected to comparative studies pertaining to the dendrite morphological characteristics. The study reveals that the process parameters affect the growth of dendrite arm because of the variation in the coefficient of thermal conductivity, expansion, and metallurgical incompatibility of the metals. In the PGMA welding process, the dendrite length decreases, while its width increases in all the locations of the weld by varying dimensionless factors ϕ (0.05, 0.15, and 0.25) and keeping its heat input as constant (Ω—11.2 kJ/cm). Among the welded joints, the PGMA weld joint comparatively exhibit shorter length (20 µm) and width (4 µm) of dendrite arm than the welded joints of the GMA and SMA processes. The change in the dendrite dimension is observed to be due to the variation in the dimensionless factor ϕ and the quantity of heat transfer to the weld (QT). The studies have been systematically planned in order to gain advanced scientific knowledge to establish superior technique for multi-pass PGMA welding of thick section of austenitic stainless steel to micro-alloy steel with respect to that used with conventional welding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号