首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hot compression behaviour of AA2014 alloy having 10 wt% SiC particles was studied over a wide range of temperatures (ambient to 400 °C) and strain rates (0.01–10/s). The results were compared with those obtained from identical tests performed on the base alloy to understand the effect of the SiC particle reinforcement. Processing maps were generated using dynamic materials model from the flow stress of the samples. Microstructures of the deformed samples suggest the occurrence of dynamic recrystallization at high temperatures and low strain rate. Flow localization and adiabatic shear bands were observed at higher strain rates and temperatures. The lack of cohesion between SiC particles and the matrix was found to be responsible for the deteriorating deformation behavior of the composite over most of the processing domains. The activation energy for high temperature deformation in the presence of the SiC particles in the alloy was found to be significantly higher than that of the matrix. This makes deformation processing of the composite more difficult than that of the matrix.  相似文献   

2.
Strength of Al-Zn-Mg-Cu matrix composite reinforced with SiC particles   总被引:5,自引:0,他引:5  
The AA7075 alloys reinforced with SiC and without SiC particles were fabricated by a pressureless infiltration method, and then, their tensile properties and microstructures were analyzed. The spontaneous infiltration of molten metal at 800 °C for 1 hour under a nitrogen atmosphere made it possible to fabricate 7075 Al matrix composite reinforced with SiC, as well as a control 7075 Al without SiC. A significant strengthening even in the control alloy occurred due to the formation of in-situ AlN particle even without an addition of SiC particles. Composite reinforced with SiC particles exhibited higher strength values than the control alloy in all aging conditions (underaged (UA), peak-aged (PA), and overaged (OA)), as well as a solution treated condition. Spontaneous infiltration was further prompted owing to the combined effect of both Mg and Zn. This may lead to an enhancement of wetting between the molten alloy and the reinforcement. Consequently, strength improvement in a composite may be attributed to good bond strength via enhancement of wetting. The grain size of the control alloy is greatly decreased to about 2.5 μm compared to 10 μm for the commercial alloy. In addition, the grain size in the composite is further decreased to about 2 μm. These grain refinements contributed to strengthening of the control alloy and the composite.  相似文献   

3.
In the present investigation, a newly fabricated Al6061 reinforced with various quantity (0.4–1.6 wt%) of nano SiC in steps of 0.4 and fixed quantity (0.5 wt%) of micro graphite particle’s hybrid nanocomposites were prepared by ultrasonic assisted stir casting method. The influence of nano SiC and graphite content on the mechanical and tribological properties of Al6061 hybrid nanocomposites were studied. The pin-on-disc equipment was used to carry out experiment at 10–40 N applied load, 0.5 m/s sliding speed and 1000 m sliding distance. The Al/SiC/Gr hybrid nano-composite and matrix alloy wear surfaces were characterized by FESEM equipped with an EDS, 3D profilometer to understand the wear mechanisms. The results of Al/SiC/Gr self-lubricating hybrid nano-composites showed improved wear resistance than the Al6061 matrix alloy. The co-efficient of friction of Al/SiC/Gr hybrid nano-composites were lower than those of the unreinforced alloy at various applied load. Compared to matrix alloy, the surface roughness of Al/SiC/Gr hybrid nano-composites had significantly reduced to 66% at low load and 75% at high load. Self-lubricating Al/SiC/Gr hybrid nanocomposites showed superior surface smoothness compared to matrix alloy.  相似文献   

4.
The effects of nano particles on double shear strength and tribological properties of A356 alloy reinforced with Al2O3 nano particles of size 30 nm were investigated. The percentage inclusions of Al2O3 were varied from 0.5 to 1.5 wt%. The particles were added with stirring at 400 rpm and squeeze casting at 750 °C and pressure of 600 MPa in a squeeze casting machine. Comparison of the performance of as cast samples of A356/Al2O3 nano composite was conducted. The tribological properties of the samples were also investigated by pin-on-disk tests at 10, 30 and 50 N load, sliding speed 0.534 m/s and sliding distance 1100 m in dry condition. SEM images of microstructure analysis of the composite, Al2O3 (0.5 and 1 %) particles were well dispersed in the A356 alloy matrix. Partial agglomeration was observed in metal matrix composite with higher (1.5 %) Al2O3 particle contents. The nano dispersed composites containing 0.5 and 1 wt% of Al2O3 nano particles exhibited the highest double shear strength, lesser wear loss and coefficient of friction.  相似文献   

5.
Surfacing composite rods based on a B83 babbit alloy reinforced by silicon carbide and boron carbide particles are fabricated by extrusion. The structure and the tribological properties of the rods are studied. Extrusion allowed us to introduce and to uniformly distribute reinforcing fillers and to change the size and the morphology of the intermetallic phases in the matrix alloy. The wear resistance of the rods made of the B83 babbit + 5 wt % SiC composite material is shown to be higher than that of commercial B83 alloy samples by a factor of 1.2. Arc surfacing is used to deposit antifriction coatings, which are made of the surfacing composite rods based on B83 babbit reinforced by boron carbide or silicon carbide particles, onto steel substrates. The deposited layers exhibit good adhesion to the substrates: the melting line is continuous and does not contain discontinuities. The structure and the tribological properties of the deposited coatings are studied. The wear resistance of the composite coatings is higher than that of the B83 alloy–based coating by 30%.  相似文献   

6.
This study was aimed at investigating the effects of microstructure on the fracture behavior of a 2124 aluminum composite reinforced with SiC whiskers. Particular emphasis was placed on the role of matrix intermetallic particles, inhomogeneous distribution of whiskers, and whisker breakage in the fracture process. Various tests were conducted on the composite to identify the micromechanical processes that were involved in microvoid or microcrack formation. Detailed microstructural analyses showed that the aluminum matrix contained a significant amount of coarse manganese-containing particles of various sizes which could have been formed during composite processing.In situ scanning electron microscope (SEM) fracture study of the crack initiation and propagation processes clearly showed that these coarse particles fractured prior to matrix/whisker decohesion or whisker breakage, suggesting that the manganese-containing par- ticles significantly accelerated crack initiation in the 2124 Al-SiCw composite. For a better ma- trix alloy for use in the composite, it is suggested that microalloying elements must be monitored to prevent the formation of the coarse intermetallic particles.  相似文献   

7.
This article presents characterization of 99.85 % pure aluminum with 4 % copper, reinforced with varying proportions of silicon carbide. Al–Cu–SiC metal matrix composite (MMC’s) are prepared by powder metallurgy route for 0, 2.5, 5, 7.5, 10, 12.5 and 15 % of SiC addition. To investigate the effects of adding SiC particles, microstructural analysis and mechanical properties by micro-hardness, compression, wear and thermal conductivity are studied. Scanning electron microscope image shows uniform distribution of particulates. Results show that upon increasing addition of SiC particles, micro-hardness and compression strength increases, whereas thermal conductivity decreases. Wear rate increases till 7.5 % SiC addition, with further addition of SiC, wear rate increases due to the un-bonding of SiC particles from the MMC, aiding in the increase of wear rate. Addition of SiC up to 7.5 % play an important role in improving wear resistance, thermal and mechanical properties of Al–Cu–SiC MMC.  相似文献   

8.
The objective of this work is to fabricate functionally graded unreinforced copper alloy (Cu–10Sn) and a Cu–10Sn/SiC composite (Øout100 × Øin70 × 100 mm) by horizontal centrifugal casting process and to investigate its mechanical and tribological properties. The microstructure and hardness was analysed along the radial direction of the castings; tensile test was conducted at both inner and outer zones. Microstructural evaluation of composite indicated that the reinforcement particles formed a gradient structure across the radial direction and maximum reinforcement concentration was found at the inner periphery. Hence maximum hardness (205 HV) was observed at this surface. Tensile test results showed that, the tensile strength at inner zone of composite was observed to be higher (248 MPa) compared to that of the outer zone and unreinforced alloy. As mechanical properties showed better results at inner periphery, dry sliding wear experiments were carried out on the inner periphery of composite using pin-on-disc tribometer. Process parameters such as load (10–30 N), sliding distance (500–1500 m) and sliding velocity (1–3 m/s) were analyzed by Taguchi L27 orthogonal array. The influence of parameters on wear rate was analyzed by signal-to-noise ratio and analysis of variance. Analysis results revealed that load (54%) had the highest effect on wear rate followed by sliding distance (18.2%) and sliding velocity (3.7%). The wear rate of composite increased with load and sliding distance, but decreased with sliding velocity. Regression equation was developed and was validated by confirmatory experiment. Worn surface of composite was observed using scanning electron microscopy and transition of wear was observed at all extreme conditions.  相似文献   

9.
The effect of matrix microstructure on the stress-controlled fatigue behavior of a 2080 Al alloy reinforced with 30 pct SiC particles was investigated. A thermomechanical heat treatment (T8) produced a fine and homogeneous distribution of S′ precipitates, while a thermal heat treatment (T6) resulted in coarser and inhomogeneously distributed S′ precipitates. The cyclic and monotonic strength, as well as the cyclic stress-strain response, were found to be significantly affected by the microstructure of the matrix. Because of the finer and more-closely spaced precipitates, the composite given the T8 treatment exhibited higher yield strengths than the T6 materials. Despite its lower yield strength, the T6 matrix composite exhibited higher fatigue resistance than the T8 matrix composite. The cyclic deformation behavior of the composites is compared to monotonic deformation behavior and is explained in terms of microstructural instabilities that cause cyclic hardening or softening. The effect of precipitate spacing and size has a significant effect on fatigue behavior and is discussed. The interactive role of matrix strength and SiC reinforcement on stress within “rogue” inclusions was quantified using a finite-element analysis (FEA) unit-cell model.  相似文献   

10.
A metal matrix composite (MMC) of 2014 aluminum alloy reinforced with 15 vol pct SiC particulate was produced by the spray-forming-deposition process. The as-deposited preform revealed a high density and a homogeneous reinforcement distribution. Reactive products were not found on interfaces between the reinforcement and the matrix. Compared to the control alloy, the composite showed accelerated aging after solutionizing at 502 °C, while aging was retarded after solutionizing at 475 °C. Analysis indicated that the activation energy was almost the same for the aging process after different solutionizing treatments. This suggested that while the thermal barrier for the aging process was the same, other factors affecting the aging process should be considered. For example, the effective concentration of the precipitate forming elements possibly decreased after incompletely solutionizing at 475 °C. After heat treatment, the composite showed a tensile strength similar to the control alloy. The wear resistance of the composite improved considerably. The aging behavior of the composite was also studied using the nanoindentation technique. Steep gradient distribution of elastic modulus and hardness around the reinforcement SiC particulate was observed. Theoretical analysis showed that this could be attributed to the gradient distribution of precipitates, resulting from a gradient distribution of dislocation density around the SiC particulates caused by residual thermal misfit stresses.  相似文献   

11.
Powder Metallurgy and Metal Ceramics - The structure and mechanical properties of a powder composite with an AMg5 alloy metallic matrix reinforced with SiC particles have been examined. The...  相似文献   

12.
Here we have reported individual and combined effect of graphite and SiC into Cu matrix during fabrication of Cu–graphite–SiC hybrid metal matrix composite by powder metallurgy. Mechanical properties of the composites are enhanced by simultaneous addition of 1, 3, 5, 10 and 15 vol. % of graphite along with 2, 5 and 10 wt. % of SiC into pure Cu, whereas electrical conductivity deteriorates. Composites are fabricated by cold compaction of composite powder mixture followed by conventional sintering in a tubular furnace at 900 °C for 1 h in argon atmosphere. For comparison, SiC powder size of 5 and 50 µm are used to study the effect of SiC particle size on microstructure, mechanical and electrical properties of the composites. Optical microscopy and scanning electron microscopy reveal the homogeneous distribution of graphite and SiC in matrix and good compatibility between Cu–graphite and Cu–SiC particles. Hardness of the composites decreases with increase in graphite and increases with increase in SiC content. Composites containing fine SiC particles show higher hardness value as compared to coarse particles. Maximum Vickers hardness value of 75 is obtained for Cu-1 vol. % graphite-10 wt. % SiC composite. Electrical conductivity decreases with increase in both graphite and SiC content. Composites containing coarse SiC particles exhibit higher electrical conductivity than fine SiC.  相似文献   

13.

Near-net shaping of Mg-RE alloy matrix composites has received increasing attention. In this work, stir casting followed by extrusion was adopted to fabricate Mg-RE alloy (WE43) matrix composites reinforced by micron-sized SiC particles. The microstructural evolutions of SiCp/WE43 composites partially remelted from as-cast and extruded states were studied. Furthermore, the thixoformability of SiCp/WE43 composites in different states was evaluated by thixoextruding a type of double-cup component. The microstructures of as-cast SiCp/WE43 composites were optimized under the comprehensive effects of SiC particles and RE elements. The SiCp/WE43 composite was fully recrystallized during hot extrusion, and the α-Mg matrix consisted of fine equiaxed grains. Although the as-cast SiCp/WE43 composite consisted of satisfactory structures and can be successfully thixoextruded into the final component with good surface quality and no evidence of internal defects, the microstructures, Vickers hardness, tensile mechanical properties, and wear resistance were still inferior to those of the component thixoextruded from extruded composite. Moreover, the thixoextrusion process was analyzed schematically, and an ideal thixoforming process that should contain two stages was proposed.

  相似文献   

14.
Al-SiC nanocomposites were prepared by high energy ball milling of mixtures of pure Al and 50-nm-diameter SiC nanoparticles, followed by spark plasma sintering. The final composites had grains of approximately 100 nm dimensions, with SiC particles located mostly at grain boundaries. The samples were tested in uniaxial compression by nano- and microindentation in order to establish the effect of the SiC volume fraction, stearic acid addition to the powder, and the milling time on the mechanical properties. The results are compared with those obtained for pure Al processed under similar conditions and for AA1050 aluminum. The yield stress of the nanocomposite with 1 vol pct SiC is more than ten times larger than that of AA1050. The largest increase is due to grain size reduction; nanocrystalline Al without SiC and processed by the same method has a yield stress seven times larger than AA1050. Adding 0.5 vol pct SiC increases the yield stress by an additional 47 pct, while the addition of 1 vol pct SiC leads to 50 pct increase relative to the nanocrystalline Al without SiC. Increasing the milling time and adding stearic acid to the powder during milling lead to relatively small increases of the flow stress. The hardness measured in nano- and microindentation experiments confirms these trends, although the numerical values of the gains are different. The stability of the microstructure was tested by annealing samples to 423 K and 523 K (150 °C and 250 °C) for 2 hours, in separate experiments. The heat treatment had no effect on the mechanical properties, except when treating the material with 1 vol pct SiC at 523 K (250 °C), which led to a reduction of the yield stress by 13 pct. The data suggest that the main strengthening mechanism is associated with grain size reduction, while the role of the SiC particles is mostly that of stabilizing the nanograins.  相似文献   

15.
Two-body abrasive wear resistance of 7075 Al-alloy reinforced with 20 wt% Al2O3 particles has been studied with reference to unreinforced base alloy by design of experimental technique. Taguchi L9 orthogonal array and analysis of variance techniques considering four factors, i.e., load, size of SiC abrasive particle, velocity and sliding distance, each at three different levels, have been employed. The experimental results reveal that wear resistance of composite is far superior than that of the unreinforced base alloy under any given test condition. In general, the most dominating factor is found to be the size of abrasive particle followed by load for both base alloy and composite. The confirmation tests reveal the accuracy level ±?5.52 and ±?6.06% for base alloy and composite, respectively. Mechanism of abrasive wear and the difference of wear response of base alloy and composite are discussed via characterizations of worn surface and generated wear debris.  相似文献   

16.
The volume wear behavior of MoSi2/SiC and MoSi2/ZrO2 composites was evaluated using 150 grit SiC particles in a pin-on-drum abrasion test. The addition of SiC whiskers or particles reduced the volume wear of the composite relative to monolithic MoSi2 by about a factor of two, with the SiC whisker containing composite having a slightly lower volume wear rate than the SiC particulate reinforced composite. The addition of partially-stabilized (PS)-ZrO2 particles lowered the volume wear of the composite relative to MoSi2. The addition of unstabilized (US)-ZrO2 or fully-stabilized (FS)-ZrO2 particles to the MoSi2 matrix had little effect of the volume wear relative to the unreinforced matrix. The difference in wear behavior of the ZrO2 reinforced composites may be associated with the ability of the PS-ZrO2 particles to transform reducing the fragmentation process during abrasion.  相似文献   

17.
Wettability of liquid A359 alloy on SiC particles under molten salt NaCl-KCl-NaF is found at 180 deg, meaning that SiC particles prefer the molten salt phase against the Al phase or the Al/molten salt interface. Thus, this molten salt can be used for recycling, i.e., to separate the phases in the SiC reinforced Al matrix composites. If the separation process is interrupted, Al droplets (submillimeter solidified powder) can be produced, stabilized/surrounded by a monolayer of shielding SiC particles.  相似文献   

18.
用DTA对SiO2 与MgLi 合金反应合成复合材料的热力学进行了研究, 证明反应能够进行。检测结果表明反应生成的粒子尺寸细小且分布均匀。复合材料的强度、硬度、弹性模量明显提高; 该复合材料的延伸率低于基体合金, 但仍可达到较高水平( > 4%) , 高于Al2O3 及SiC纤维增强复合材料。  相似文献   

19.
Aluminum (6061) matrix composites reinforced with different SiC particles were processed. Black SiC particles were used in their as-received form or after artificial oxidation, leading to a 50-nm-thick SiO2 layer surrounding the SiC particles. The manufacturing route used was the compocasting technique, which allows maintenance of the semisolid slurry at relatively low temperatures (<650 °C) during the incorporation of the reinforcement. Before squeeze casting, the liquid alloy is held at 700 °C for 5 to 10 minutes. The interface between the aluminum matrix and SiC was characterized by transmission electron microscopy (TEM). Results show that no reaction takes place during compocasting between the as-received SiC particles and the molten aluminum. This is a consequence of the low temperatures and short holding times in the liquid state of the 6061 alloy, possible with this process. Prolonged holding at 800 °C of this material leads to extensive formation of A14C3. In the case of artificially oxidized SiC particles, the SiO2 layer surrounding the SiC particles reacts with the molten Al-Mg-Si alloy to produce MgAl2O4. However, the amount of Mg from the base alloy lost to form this spinel phase is not sufficient to prevent age hardening of the material.  相似文献   

20.
ZA-27 alloy is a lightest alloy which offers excellent bearing and mechanical properties in automobile and industrial applications. In this study, the MoS2 particles with 0.5, 1 and 1.5 (wt%) weight percentages were reinforced in ZA-27 alloy to form composites, which were fabricated by using ultrasonic assisted stir casting method. The ZA-27/MoS2 composite specimens were examined for chemical composition with the aid of XRD technique and EDS. Microstructure analysis of the ZA-27/MoS2 composites was studied using SEM. Tests were conducted for mechanical properties such as tensile strength and hardness on ZA-27/MoS2 composites samples as per ASTM standards. Dry sliding wear behavior of the composites was tested at various operating conditions by using pin-on-disc apparatus. Microstructural images of the ZA-27 composites reveal that there is a uniform dispersion of the MoS2 particles in the base material. From the results it is observed that the mechanical properties increases with ZA-27 reinforced with 0.5 wt% MoS2 composite and further decreases with increase in the filler content. The enhanced wear resistance is observed in ZA-27 reinforced MoS2 composites as compared to the unreinforced alloy. The wear rate of the ZA-27 composites decreases with the increase in filler content, further the worn surfaces as examined using SEM reveals the wear mechanism explaining the improved wear resistance of the particulate composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号