首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This paper describes the methods for the deposition of AHC films on aluminium alloys (2024, 7075 and an additional Al-Si alloy) and AISI 4340 steel. Both unmodified and silicon modified AHC films were deposited. AHC films could be deposited on aluminium alloys without any interlayer. The deposition of AHC films on steel required an interlayer which could be aluminium, silicon or chromium. Thin films (1–2 μm) deposited on aluminium alloys and steel influenced durability of films and friction coefficients in contact with steel. These were believed to be due to plastic deformation of substrates. Deposition of a thicker coating system (interlayer + AHC) reduced friction coefficients and also improved film durability. The durability of films deposited on steel substrates was evaluated under both unlubricated and lubricated conditions for 5.5 million cycles under 4.4 N load and up to 2.5 m/s sliding speed. Although there was wear, the films survived 5.5 million test cycles under unlubricated sliding, but in the presence of two lubricants, the film wear was very small and could not be measured. It was observed that the wear of the steel counterface in contact with silicon-containing AHC films could be higher than that against an uncoated steel in the presence of certain lubricants.  相似文献   

2.
The mechanical and tribological properties of amorphous carbon films have been studied in more detail in recent years because these films (a) can be deposited near room temperature, thus allowing film deposition on common engineering alloys (i.e., aluminum and steel) without altering their mechanical properties, and (b) are smooth and conform to surface roughness of the substrate, thus requiring no post deposition processing. In addition, amorphous carbon films exhibit low unlubricated sliding friction in contact with steel and ceramics which is comparable to that of steel against steel in a lubricated contact. The wear resistance of these films is also better than Ti‐based hard coatings. Further improvement in film tribological properties can be achieved by modifying film chemical composition. Because of these attractive features, amorphous carbon films have been evaluated in several applications including automotive, electronic and biomedical engineering. However, environmental factors such as oxygen and humidity have been found to influence tribological properties significantly. This paper reviews the current understanding of the tribological properties of both hydrogenated and non‐hydrogenated amorphous carbon films, the mechanisms responsible for low friction coefficient and identifies areas that require further research. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
《Wear》2007,262(7-8):876-882
Transfer films of PTFE/bronze composites with 5–30% volume content of bronze were prepared using a RFT friction and wear tester on surface of AISI-1045 steel bar by different sliding time (5–60 min). Tribological properties of these transfer films were studied using a DFPM reciprocating tribometer in a point contacting configuration under normal loads of 0.5, 1.0, 2.0 and 3.0 N. Thickness and surface morphology of the transfer films were investigated. It was found thickness of the transfer films slightly increased along with the increase of bronze content of corresponding composites. Increased sliding time of transfer film preparation is helpful to form transfer film with better ductibility and continuity, but sliding time almost has no effect on tribological properties of the transfer film. Higher bronze content in the composite improved tribological properties of the corresponding transfer film, i.e., reduced friction coefficient and prolonged wear life. All these transfer films are sensitive to load change. Their wear life becomes shorter along with the increase of load. SEM image of the worn surface show fatigue wear and adhesion wear have happened on the transfer film during the friction process. The author believe bronze in the transfer film effectively partaked in shear force applied on the transfer film and its good ductibility helped to improve tribological properties of the transfer films.  相似文献   

4.
Small amplitude (50 μm) reciprocating wear of hydrogen-containing diamond-like carbon (DLC) films of different compositions has been examined against silicon nitride and polymethyl-methacrylate (PMMA) counter-surfaces, and compared with the performance of an uncoated steel substrate. Three films were studied: a DLC film of conventional composition, a fluorine-containing DLC film (F-DLC), and silicon-containing DLC film. The films were deposited on steel substrates from plasmas of organic precursor gases using the Plasma Immersion Ion Implantation and Deposition (PIIID) process, which allows for the non-line-of-sight deposition of films with tailored compositions. The amplitude of the resistive frictional force during the reciprocating wear experiments was monitored in situ, and the magnitude of film damage due to wear was evaluated using optical microscopy, optical profilometry, and atomic force microscopy. Wear debris was analyzed using scanning electron microscopy and energy dispersive spectroscopy. In terms of friction, the DLC and silicon-containing DLC films performed exceptionally well, showing friction coefficients less than 0.1 for both PMMA and silicon nitride counter-surfaces. DLC and silicon-containing DLC films also showed significant reductions in transfer of PMMA compared with the uncoated steel. The softer F-DLC film performed similarly well against PMMA, but against silicon nitride, friction displayed nearly periodic variations indicative of cyclic adhesion and release of worn film material during the wear process. The results demonstrate that the PIIID films achieve the well-known advantageous performance of other DLC films, and furthermore that the film performance can be significantly affected by the addition of dopants. In addition to the well-established reduction of friction and wear that DLC films generally provide, we show here that another property, low adhesiveness with PMMA, is another significant benefit in the use of DLC films.  相似文献   

5.
《Wear》2006,260(7-8):745-750
Rare-earth (RE) (lanthanum-based) thin films were prepared on hydroxylated glass substrates by a self-assembling process from specially formulated solution. Atomic force microscope (AFM) and X-ray photoelectron spectrometry (XPS) and scanning electron microscope (SEM) are used to characterize the thin films. The tribological properties of the as-prepared thin films sliding against a steel ball were evaluated on a friction and wear tester. The tribological experiment shows that the friction coefficient of glass substrate reduced from 0.85 to 0.13 after the formation of RE self-assembled film (SAM) on its surface. And the RE self-assembled film has longer wear life (2880 sliding pass). It is demonstrated that RE self-assembled film exhibited good wear resistant property. The superior friction reduction and wear life of RE films are attributed to good adhesion of the film to the substrate and special characteristic of the RE elements.  相似文献   

6.
The low contact pressure characteristic of the microtribological regime relative to macro and nanosystems is suited for testing the microfrictional properties of different types of thin films. Motivated by macro as well as microsystem applications, this study investigates the microfrictional properties of different types of diamond-like carbon (DLC) films, prepared using low- and high-frequency plasma-assisted chemical vapor deposition (HF-PACVD) and the vacuum arc method. Testing was performed with a reciprocating precision microtribometer. Silicon, sapphire and steel balls were used as counterbodies. Friction-load curves suggest that, for applied forces in the μN to mN regime, two properties have a strong influence on the microfriction: first, the chemical composition plays a dominant role and second, the film roughness. With silicon and steel balls, the microfriction of hydrogen-free DLC films was greater than the hydrogen-containing films. With sapphire counterbodies, the results indicate that microfriction is inversely proportional to the film roughness. Also, for the films tested, microfriction was determined to be independent of the sliding velocity. For the force (pressure) regimes tested, mild wear was observed on silicon and some steel counterbodies, while no wear could be detected on any of the DLC films. These results illustrate the utility of implementing microtribological testing in comparative coating studies.  相似文献   

7.
Friction and wear of polyimide thin films   总被引:3,自引:0,他引:3  
M.R. Chitsaz-Zadeh  N.S. Eiss Jr. 《Wear》1986,110(3-4):359-368
The friction and wear of thin polyimide films were measured as functions of the polyimide structure, the sliding speed and the temperature in a pin-on-disk machine. A 5 N load pressed a stationary 52100 steel ball against the rotating polyimide film 50 μm thick which was solvent cast on an AISI 410 stainless steel disk. The wear rates were significantly affected by structural differences which resulted from the different dianhydrides and diamines from which the polyimides were synthesized. The wear rates were lowest for the most flexible molecular chains as indicated by the glass transition temperatures. A positive correlation was found for a power law relationship between the wear rate and the elastic modulus (the correlation coefficient was 0.997) for tests at 24 and 130°C. The power law relationship is suggested by the fatigue model of wear.  相似文献   

8.
J. N. Ding  Y. G. Meng  S. Z. Wen 《Wear》2001,250(1-12):311-317
In the present study, high-Tc superconducting thin YBa2Cu3O7 films and polysilicon films were prepared to investigate the initial sliding friction properties using a ball-on-flat tribometer when samples were moved against a sapphire ball or a steel ball in ambient environment. The surface topography was measured with atomic force microscope (AFM). After five times testing, the experimental results indicate that the friction coefficient of YBa2Cu3O7 films is lower than that of polysilicon films when sliding against a sapphire ball and almost the same when sliding against a steel ball. In particular, the initial friction of YBa2Cu3O7 films is more stable when sliding against a sapphire ball. However, the initial friction of polysilicon films fluctuates during a cycle period when sliding against a sapphire ball. They are both stable when sliding against a steel ball. Although, the surface profile of the YBa2Cu3O7 film is rough and can be seen to be rougher than the polysilicon film, but the friction coefficient of the YBa2Cu3O7 film is lower than that of polysilicon film. Also, although the topography of YBa2Cu3O7 films changes during friction, the friction coefficients are stable. This clearly shows that the initial sliding friction of YBa2Cu3O7 films under microfriction is stable. The observation signifies YBCO film is a good film to prevent stick–slip motion in ambient environment. The wear properties of YBa2Cu3O7 films suggest that the superconducting outgrowths (CuO) are loose and they can be easily removed.  相似文献   

9.
采用离子束溅射沉积镀膜法制备了DLC薄膜,研究了偏压对薄膜性能的影响。通过原子力显微镜(AFM)和拉曼光谱对DLC薄膜的表面形貌以及内部结构进行了分析表征。并用UTM-2摩擦磨损仪对其摩擦学性能进行了测试。结果表明,利用离子束溅射沉积制备的DLC薄膜具有良好的减摩抗磨性能。随着偏压的增加薄膜的摩擦因数先减小后增加,在-150 V偏压时,薄膜的摩擦学性能最好。  相似文献   

10.
R.Y. Lee  Z. Eliezer 《Wear》1984,95(2):165-175
Friction and wear experiments were conducted on couples consisting of Invar and Fe-3%Si steel pins sliding against a tool steel disk in a mild vacuum (0.1 mmHg) at room temperature. At loads below a critical value, protective films, identified as compacted oxides, were observed on the sliding surfaces. The resulting friction and wear values were very low. A critical film thickness was observed that was thinner for Invar (6 μm) than for Fe-3%Si steel (22 μm), presumably because of a larger difference between the thermal expansion coefficients of oxide and metal for Invar than for Fe-3%Si steel. This critical thickness was found to be independent of sliding speed or applied load. However, at higher loads, the critical thickness was reached at lower sliding times, probably as a result of a higher flash temperature.  相似文献   

11.
Masao Kohzaki  Shoji Noda  Haruo Doi 《Wear》1990,140(2):251-261
The sliding friction coefficients and specific wear of SiC ceramics coated with a silicon thin film (Si/SiC) with and without subsequent Ar+ irradiation against a diamond pin were measured with a pin-on-disk tester at room temperature in laboratory air of approximately 50% relative humidity without oil lubrication for 40 h. The friction coefficient of Ar+-irradiated Si/SiC was about 0.05 with a normal load of 9.8 N and remained almost unchanged during the 40 h test, while that of SiC increased from 0.04 to 0.12 during the test. The silicon deposition also reduced the specific wear of SiC to less than one tenth of that of the uncoated SiC. Effectively no wear was detected in Si/SiC irradiated to doses of over2×1016ions cm−2.  相似文献   

12.
Friction and wear tests between a stationary block and a rotating ring under lubrication with molybdenum disulphide (MoS2) were carried out at room temperature at a sliding distance of 500 m. Silicon nitride and cemented carbide blocks were pressed against a bearing steel ring, silicon nitride-bearing steel and cemented carbide-bearing steel pairs, by a load of 1600 N. The effect of molybdenum disulphide upon the coefficient of friction and the wear of the steel ring was discussed for both pairs in comparison with mineral oil lubricants. Molybdenum disulphide was more effective in reducing the coefficient of friction and the wear of the ring than the oil lubricants. Various mechanical pretreatment for forming MoS2 film on the ring surface prior to the sliding tests were also considered. The mechanical pretreatment enabled the sliding test with the low friction coefficient even without lubrication over the sliding distance of 500 m. In general, the coefficient of friction and wear loss of the steel ring were smaller in the silicon nitride-bearing steel pair than in the cemented carbide-bearing steel pair.  相似文献   

13.
Chemical vapor deposition(CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don’t have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond(BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD(HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond(BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond(UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond(FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti-frictional components.  相似文献   

14.
The frictional behaviour of thin metallic films on silicon substrates sliding against 52100 steel balls is presented. The motivation of this work is to identify an optimum film thickness that will result in low friction under relatively low loads for various metallic films. Dry sliding friction experiments on silicon substrates with soft metallic coatings (silver, copper, tin and zinc) of various thickness (1–2000 nm) were conducted using a reciprocating pin-on-flat type apparatus under a controlled environment. A thermal vapour deposition technique was used to produce pure and smooth coatings. The morphology of the films was examined using an atomic force microscope, a non-contact optical profilometer and a scanning electron microscope. Following the sliding tests, the sliding tracks were examined by various surface characterization techniques and tools. The results indicate that the frictional characteristics of silicon are improved by coating the surface with a thin metallic film, and furthermore, an optimum film thickness can be identified for silver, copper and zinc coatings. In most cases ploughing marks could be found on the film which suggests that plastic deformation of the film is the dominant mode by which frictional energy dissipation occurred. Based on this observation, the frictional behaviour of thin metallic coatings under low loads is discussed and friction coefficients are correlated with an energy based friction model.  相似文献   

15.
The tribological behavior of micro- and nano-crystalline diamond films is evaluated in dry sliding and water lubricating condition. The main wear mechanism is found to be abrasive wear mode induced by self-polishing. Non-diamond components and higher compressive residual stresses are detected in flat MCD films after dry sliding, in comparison to NCD. Origin of decreased friction coefficient in CVD diamond tribosystems under water lubrication is attributed to the effect of water on the formed graphic material and the chemisorbing of diamond surface with H2O, hydrogen or hydroxyl ions. For the MCD/NCD or NCD/MCD contact, the surface roughness of ball largely determines the stable friction coefficient in dry sliding, where NCD film usually presents higher wear rate.  相似文献   

16.
Zhang  Wei  Tanaka  Akihiro  Wazumi  Koichiro  Koga  Yoshinori 《Tribology Letters》2003,14(2):123-130
Diamond-like carbon (DLC) film was deposited on Si wafer by a plasma CVD deposition system using benzene. Tribological properties of the DLC film were evaluated using a ball-on-disk tribo-meter in low (RH 1720 %) and high humidity (RH 9095 %) conditions in air. The effect of sliding speed (4.2 mm/s to 25 mm/s) and load (1.06 N to 3.08 N) on friction and wear was investigated. The friction behavior of the DLC film was obviously different in low and high humidity. When tested under low humidity conditions, the friction coefficient decreased significantly with increasing speed, and increased with load. However, under high humidity conditions, the friction coefficient increased with the speed and decreased with increasing load. The wear of the DLC film was little influenced by the sliding speed, normal load and humidity; a level of 10-8 mm3/Nm could be obtained in all tests. The formation of a uniform transfer layer would be the main factor which controlled the friction coefficient of the DLC films. Unlike the friction, the wear resistance of the DLC film is not so easy to discuss and may be affected mainly by the tribo-chemical reaction in all the test conditions.  相似文献   

17.
Silicon-doped diamond-like carbon (Si-DLC) films possess the potential to improve wear performance of DLC films in humid atmospheres and at higher temperatures. But many experimental results of Si-DLC films show that their structures and tribological properties changed greatly with silicon content. Therefore, molecular dynamics (MD) simulations were used to study the sliding friction process between DLC and Si-DLC films on un-lubricated boundary condition. The results show that a part of sp2 bonding of the Si-DLC films is converted into sp3 bonding with the addition of silicon atoms, and the sp3/sp2 ratio increases with the increase in silicon content. A transfer film between the DLC and Si-DLC films is formed and the friction force changes with the silicon content. Moreover, the simulations have showed that the silicon addition promotes the bonding of interfilms being formed.  相似文献   

18.
This study concerns the effects of tribochemical interactions at the interface of Si-DLC (silicon-doped diamond-like carbon) film and steel ball in sliding contact on tribological properties of the film. The Si-DLC film was over-coated on pure DLC coating by radio frequency plasma-assisted chemical vapor deposition (r.f. PACVD) with different Si concentration. Friction tests against steel ball using a reciprocating type tribotester were performed in ambient environment. X-Ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) were used to study the chemical characteristics and elemental composition of the films and mating balls after tests. Results showed a darkgray film consisting of carbon, oxygen and silicon on the worn steel ball surface with different thickness. On the contrary, such film was not observed on the surface of the ball slid against pure DLC coating. The oxidation of Si-DLC surface and steel ball was also found at particular regions of contact area. This demonstrates that tribochemical interactions occurred at the contact area of Si-DLC and steel ball during sliding to form a tribofilm (so called transfer film) on the ball specimen. While the pure DLC coating exhibited high coefficient of friction (∼0.06), the Si-DLC film showed a significant lower coefficient of friction (∼0.022) with the presence of tribofilm on mating ball surface. However, the Si-DLC film possesses a very high wear rate in comparison with the pure DLC. It was found that the tribochemical interactions strongly affected tribological properties of the Si-DLC film in sliding against steel.  相似文献   

19.
Two kinds of room temperature ionic liquid (RTIL) films carrying vinyl and hydroxyl functional groups were prepared on single-crystal Si wafers by spin coating. The tribological properties of the RTIL films sliding against AISI-52100 steel ball and Si3N4 ball in a ball-on-plate configuration were investigated on a dynamic–static friction coefficient measurement apparatus, using perfluoropolyether (PFPE) film as a comparison. The tribological behaviors of the ionic liquid films sliding against the same counterparts at extended test durations were also evaluated using a universal UMT-2MT test rig. The morphologies of the wear tracks of the RTIL films and the counterparts were examined using a scanning electron microscope equipped with an energy-dispersive X-ray analyzer attachment. It was found that the tribological performances of the ionic liquid films were closely related to the chemical structures of the RTILs and the chemical characteristics of the substrate surfaces. The films of vinyl group functionalized ionic liquids on hydroxylated substrate and vinyl group modified substrate exhibited very good friction-reduction and wear-resistant properties. It was assumed that there were enough strong forces between the films and substrate in these cases, and the ionic liquid molecules maintained good flexibility simultaneously. The films on hydrogen-terminated and methyl-terminated substrate showed poor tribological performance, which could be related to the relatively weak forces between the films and substrates. Moreover, the films on hydroxylated substrate showed lower friction at higher sliding velocities, which was assumed to be governed by the more rapid adsorption of the ionic liquid molecules on the steel ball at a higher sliding velocity. In addition, the ionic liquid films also had excellent tribological properties as they slid against silicon nitride ball. Therefore, it was supposed that the ionic liquid films could be used as a kind of universal lubricant for various combinations of the frictional pair.  相似文献   

20.
As-deposited diamond coatings generally have a high surface roughness which results in a high friction coefficient and extensive wear of the counter material in sliding contact. Therefore several methods for smoothening diamond coatings have been proposed, such as laser polishing, molten metal etching, thermochemical polishing and mechanical polishing. All these methods have some disadvantage e.g. long processing time or high processing temperature. Furthermore, they are all post-deposition treatments i.e. the manufacture of these coatings requires at least two processing steps, deposition and smoothening. With the present method which combines d.c. bias with hot flame diamond deposition, a smooth diamond surface is produced during the actual growth of the film. No post-deposition treatment is necessary. The surface roughness is not dependent on the coating thickness which means that thick coatings with smooth surface can be produced. In fact, the method has a smoothening effect, i.e. rough surfaces can be made smooth. The method is comparable to conventional hot flame deposition of diamond as to growth rate and cost of producing the coatings. The coatings have a nano-crystalline structure and a surface roughness of Ra = 25 nm, and result in a friction coefficient of 0.1 or less in dry sliding and about 0.05 in water-lubricated sliding against cemented carbide. Their wear resistance is virtually the same as that of conventional diamond films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号