首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了研究冷壁面上霜结晶的生长过程以及各参数的变化规律,利用格子-Boltzmann方法(LBM)方法,建立一个二维介观模型,实验验证了模型的可靠性,分析了霜层温度变化和密度增长规律,并直观模拟出霜结晶凝聚变化过程.结果表明:霜层表面温度在早期阶段迅速增加,但增加率随着结霜时间增加而减小;霜层内部温度随霜层厚度的增加呈线性增长;霜层平均密度随结霜时间增加呈现出先慢后快的规律;随着结霜过程的进行,由于越往上,霜晶体积分数越小,导致霜层内部密度随霜层厚度的上升而减小.  相似文献   

2.
圆柱绕流气动噪声数值分析   总被引:1,自引:0,他引:1  
顾信忠  李舜酩 《声学技术》2016,35(2):95-100
为了快速预测刚性圆柱绕流的气动噪声,研究了一种将离散涡方法(DVM)和涡声理论结合起来计算低马赫数、高雷诺数流场气动噪声的方法。首先用Oseen粘性涡模型改进了离散涡方法并模拟了圆柱绕流,分析结果与实际情况相符。根据流场计算的结果,应用涡声理论进一步计算了远场的声压。测点的总声压级与实验值及其他数值计算结果都比较吻合。最后绘制了声场的指向性特性曲线,表明圆柱绕流声场明显的偶极子特性。  相似文献   

3.
圆柱绕流的流场特性及涡脱落规律研究   总被引:3,自引:1,他引:3  
采用粒子图像测速技术对630、800及950三种雷诺数条件下的圆柱绕流场进行了实验,给出了圆柱下游沿流动方向4倍圆柱直径和垂直方向3倍圆柱直径区域内的速度场、涡量场以及涡脱落现象的时空演化规律.结果表明:圆柱尾流区域位于垂直方向约1.5~2.5倍圆柱直径范围内,随着雷诺数增大,这一范围呈现缩小趋势,而主流对涡的拉伸和输运能力有所增强;涡脱落频率随雷诺数增大而增大,小雷诺数时能够较为完整地捕捉到涡生成、脱落、发展和耗散过程,由于PIV采集频率的限制,大雷诺数条件下涡脱落整个过程不易被完整捕捉到.  相似文献   

4.
A modified method of analyzing experimental data is outlined, allowing the degree of linearity of the relation between the Reynolds and Nusselt numbers to be determined.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 59, No. 4, pp. 648–649, October, 1990.  相似文献   

5.
Temperature fields in a fluid stream are investigated by a pulse holographic interferometry method at low Reynolds numbers.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 58, No. 6, pp. 899–905, June, 1990.  相似文献   

6.
The principal objective of the present work is to conduct investigations leading to a more complete explanation of heat-transfer processes on the external wall of a heated cylinder in laminar axial flow around it under high pressures. Investigations are aimed at determination of the limits of existence of mixed convection, explanation of the influence of free convection on the disturbances of heat transfer during laminar flow of a medium, and final explanation of intensification of heat-transfer processes occurring in a flow at high pressures. Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 6, pp. 163–169, November–December, 2005.  相似文献   

7.
In this paper, processes in the early stages of vortex motion and the development of flow structure behind an impulsively-started circular cylinder at high Reynolds number are investigated by combining the discrete vortex model with boundary layer theory, considering the separation of incoming flow boundary layer and rear shear layer in the recirculating flow region. The development of flow structure and vortex motion, particularly the formation and development of secondary vortex and a pair of secondary vortices and their effect on the flow field are calculated. The results clearly show that the flow structure and vortices motion went through a series of complicated processes before the symmetric main vortices change into asymmetric: development of main vortices induces secondary vortices; growth of the secondary vortices causes the main vortex sheets to break off and causes the symmetric main vortices to become “free” vortices, while a pair of secondary vortices is formed; then the vortex sheets, after breaking off, gradually extend downstream and the structure of a pair of secondary vortices becomes relaxed. These features of vortex motion look very much like the observed features in some available flow field visualizations. The action of the secondary vortices causes the main vortex sheets to break off and converts the main vortices into free vortices. This should be the immediate cause leading to the instability of the motion of the symmetric main vortices. The flow field structure such as the separation position of boundary layer and rear shear layer, the unsteady pressure distributions and the drag coefficient are calculated. Comparison with other results or experiments is also made. This work was presented at the First Asian Congress of Fluid Mechanics, Bangalore in December 1980.  相似文献   

8.
给出了在锁定状态下不同振动条件时气动力系数变化的计算结果及其机理分析。首先给出固定圆柱绕流气动力系数的数值模拟结果;其次,在特定的频率比条件下,计算了升力系数均方根值和平均阻力系数随振幅的变化,并从圆柱的底部压力系数和漩涡生成长度两方面对这种变化进行了机理分析。  相似文献   

9.
以全新研制的电控气动发动机气缸流场域为研究对象,建立其几何模型,运用CFD前处理软件ICEM对流场域几何模型进行网格划分,再运用Fluent动网格技术进行动态模拟计算,分析其气缸内部流场特性,进而得出气体在工作过程中各个阶段的压力场和速度场分布.同时,将模拟计算数值与气动发动机台架实验所得值进行比较.结果表明:动网格数值模拟结果与实验结果较为接近,气动发动机气缸内流场动态仿真过程准确可靠,仿真结果可为气动发动机设计提供参考.当转速稳定于450r/min时,由仿真模拟所得数据计算得此气动发动机指示功率为0.62kW,实验时测算得同条件下实验指示功率为0.55kW,求得仿真和实验指示功率的最大误差为11.2%.利用自制的测功装置测得实验时有效功率为0.45kW,进而求得机械效率为81.8%.研究结果为下一步改善气动发动机性能提供了依据.  相似文献   

10.
The analytical solution for the linear elastic, axisymmetric problem of inner and outer edge cracks in a transversely isotropic infinitely long hollow cylinder is considered. The z = 0 plane on which the crack lies is a plane of symmetry. The loading is uniform crack surface pressure. The mixed boundary value problem is reduced to a singular integral equation where the unknown is the derivative of the crack surface displacement. An asymptotic analysis is done to derive the generalized Cauchy kernel associated with edge cracks. It is shown that the stress intensity factor is a function of three material parameters. The singular integral equation is solved numerically. Stress intensity factors are presented for various values of material and geometric parameters.  相似文献   

11.
为了研究声波对单圆柱绕流流动和传热特性的影响,建立了流场、声场、对流传热多物理场耦合的二维数学模型,并利用有限元软件COMSOL进行数值模拟。结果表明:(1)当频率f=50 Hz、声压级LSP=123~149 d B时,斯特劳哈尔数Sr随声压级增大而减小,圆柱表面压力系数CP随声压级增大而增大;(2) LSP=143 d B、f=20~80 Hz时,斯特劳哈尔数Sr、压力系数CP均随频率f增大而增大;(3)对比f=50 Hz、LSP=143 d B声波作用与无声波作用的情况,阻力系数CDF和升力系数CDL都呈周期性变化,但有声波作用时振幅增大;(4)声波作用会促进圆柱表面热量传递,但当LSP>143 d B,圆柱表面局部努塞尔数Nuθ开始减小。该研究结果为强化圆柱绕流传热提供了理论研究基础。  相似文献   

12.
A solution of magnetoelastic stresses on a three-phase composite cylinder subjected to a remote uniform magnetic induction is derived in this study. Based upon the complex variable theory and the method of analytical continuation together with alternating technique, the general expressions of both the magnetic and the magnetoelastic field quantities can be obtained. The variations of the magnetoelastic stress on various parameters are displayed in graphic form. Comparisons between the results of this work and the existing solutions in literature under special cases reveal that the present solution is correct and general.  相似文献   

13.
Flow fields from transversely oscillating circular cylinders in water at rest are studied by numerical solutions of the two‐dimensional unsteady incompressible Navier–Stokes equations adopting a primitive‐variable formulation. These findings are successfully compared with experimental observations. The cell viscous boundary element scheme developed is first validated to examine convergence of solution and the influence of discretization within the numerical scheme of study before the comparisons are undertaken. A hybrid approach utilising boundary element and finite element methods is adopted in the cell viscous boundary element method. That is, cell equations are generated using the principles of a boundary element method with global equations derived following the procedures of finite element methods. The influence of key parameters, i.e. Reynolds number Re, Keulegan–Carpenter number KC and Stokes' number β, on overall flow characteristics and vortex shedding mechanisms are investigated through comparisons with experimental findings and theoretical predictions. The latter extends the study into assessment of the values of the drag coefficient, added mass or inertia coefficient with key parameters and the variation of lift and in‐line force results with time derived from the Morison's equation. The cell viscous boundary element method as described herein is shown to produce solutions which agree very favourably with experimental observations, measurements and other theoretical findings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
常规空气源热泵和无霜空气源热泵可以统称为广义空气源热泵。本文分析了广义空气源热泵在制热/除霜(再生)过程的物理特征和能耗特点,并应用热力学原理建立了描述一个制热/除霜(再生)周期的热泵性能评价模型,推导出描述制热/除霜(再生)周期内的系统能效比COPs的通用表达式,据此分析不同类型空气源热泵存在性能差异的根本原因和性能优化方向。该模型为无霜空气源热泵技术路线的选择提供了一定的理论支持,同时可为各类空气源热泵的季节性能评价和适用性评判提供新的视角和基础工具。  相似文献   

15.
The purpose of this paper is to present the effect of finite boundary on the stress intensity factor of an internal semi-elliptical crack in a pressurized finite-length thick-walled cylinder  ( R i/ t = 4)  . The three-dimensional finite element method, in conjunction with the weight function method, is used for computing the stress intensity factor at the deepest and surface points of an axial semi-elliptical crack in a cylinder. The transition aspect ratios, the aspect ratios in which the maximum stress intensity factor translates from the deepest to the surface points of the crack, are calculated for different relative depths and cylinder lengths. The results show that the stress intensity factor increases as the cylinder length decreases, especially at the corner point of the crack compared with the deepest point. The major advantage of this paper is that a closed-form expression is extracted for the stress intensity factor at the surface point of a semi-elliptical crack, which experiences higher changes due to the effect of the finite boundary of the cylinder.  相似文献   

16.
The problem of scattering of water waves obliquely incident on a fixed long circular cylinder half-immersed in deep water with an ice-cover is investigated here. The ice-cover is modelled as an elastic plate of very small thickness. The problem is formulated using the method of multipoles. This leads to an infinite system of linear equations which are solved numerically by truncation. The reflection and transmission coefficients are obtained and depicted graphically against the wave number for various values of the angle of incidence and flexural rigidity of the ice-cover to show the effect of the presence of ice-cover on these quantities. The effect of ice-cover is seen to increase the reflection coefficient and to decrease the transmission coefficient.  相似文献   

17.
突风(平均风速随时间快速变化)作用在结构或构件上时,结构的气动力和振动状态与平稳风作用下的结果有何不同,是值得研究的问题。在风洞实验室,利用电压控制的方法,实现了具有一定风速加速度的突升和突降的风速变化过程,测试了圆柱结构在突变风速平稳风速作用下的气动力和振动状态,试验结果表明:当突升风速作用在模型上时,采用瞬时风速和气动力算得的力系数和在平稳风速下的结果一致;当突降风速作用在模型上时,采用瞬时风速和气动力算得的力系数虽然在大小上和在平稳风速下的结果一致,但是其对应的临界雷诺数范围比平稳风速对应的临界雷诺数范围,整体向小的方向上偏移了一定的量值。当不涉及到临界雷诺数时,本文的突变风速不会激发模型的大幅振动;当风速升至或降至临界雷诺数区域时,模型将发生稳定的大幅振动;当风速经过临界雷诺数时,在临界雷诺数对应的风速下发生大幅振动,随着风速的升高或降低使得对应的雷诺数离开临界区域时,振动逐渐消失  相似文献   

18.
This work reports radial patterns and velocity profiles of fluid-particle suspensions rotating in a fully filled horizontal cylinder using the technique of Particle Image Velocimetry. Dilute and mono-dispersed suspensions of non-Brownian settling as well as floating particles were considered. An analysis of the effect of particle shape on the flow patterns is provided. This was carried out by comparing the suspensions of spherical and cylindrical particles. Impact of particle shape on the particle-fluid interaction in determining the flow structure is more pronounced at lower speeds. Analysis of the velocity profiles showed a resemblance of the buoyant and settling suspensions phases. Despite the similar features observed, a difference was noted when the centrifugal forces dominate. Our experimental results are in good qualitative agreement with the previous experiments and simulations. Through a detailed investigation of velocity field we have established the strong relationship between the phase transition and rotational speed.  相似文献   

19.
《Advanced Powder Technology》2020,31(10):4166-4179
This paper presents a study of gas-solid flow in a novel cyclone separator with inner cylinder, compared with that in a conventional cyclone. The Reynolds stress model (RSM) is used to simulate fluid flow, and the discrete phase model (DPM) is selected to describe the motion behavior of particles. The experimental data measured by particle image velocimetry (PIV) is used to verify the reliability of the numerical model. The results show that in the novel cyclone, the cleaned gas can be quickly discharged from the vortex finder, the movement distance and residence time of fine particles are prolonged, the short-circuit flow and vertical vortex under the vortex finder are eliminated, the mutual interference between upflow and downflow in the cylinder is eliminated, and the region of quasi-free vortex in the cone is enlarged. Compared with the conventional cyclone, the novel cyclone has higher collection efficiency and lower pressure drop.  相似文献   

20.
Asymptotic and computational analyses of a well-posed initial-boundary-value problem are used to describe the time history of co-existing acoustic and rotational velocity disturbances in a long, narrow cylinder with uniform steady sidewall mass injection. Transient planar pressure disturbances prescribed on the open exit plane of the cylinder are the source of acoustic disturbances in the axisymmetric flow. Both the asymptotic and numerical solutions describe the nonlinear aspects of the flow interactions. The full computational results are compared favorably with those of the asymptotic study to show that; (1) transient vorticity is generated near the injection surface and is transported into the cylinder by the radial velocity component of the flow field, (2) at any sufficiently small value of time, a well defined front separates the fluid containing transient vorticity from a flow field in the interior of the cylinder containing a much smaller amplitude vorticity and, (3) at sufficiently large values of time, vorticity is present throughout the cylinder. In addition, the analytically derived acoustic solution obtained from the asymptotic analysis is used to show that the present numerical solution and all earlier studies of similar problems are missing travelling waves (eigenfunctions) which should be present in a complete mathematical solution of the defined initial-boundary-value problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号