首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
实验研究了近共沸制冷工质R404A与非共沸制冷工质R407C在水平强化换热管管外的凝结换热性能。采用"Wilson图解法"对实验数据进行处理。结果表明:对于R404A和R407C,强化管外的凝结换热系数随着壁面过冷度的增加而增大,呈现出与纯工质冷凝时不同的变化趋势,这主要是近共沸或非共沸工质凝结过程中,某些组分的凝结会遇到其它组分的凝结气膜热阻所造成的;随着过冷度增加,易挥发组分开始凝结,气膜变薄,冷凝传热系数增大。R407C在强化换热管管外的凝结换热系数比R404A要小70%左右,这是由于R407C的温度滑移较R404A要大,管外形成的凝结扩散气膜造成的影响更大。R407C在高热流密度工况下的换热效果提升明显,故应尽量工作在高热流密度区域。  相似文献   

2.
The flow and heat transfer characteristics of binary refrigerant mixtures in a heated horizontal tube were investigated numerically. The pressure drop, temperature profile, and heat transfer coefficient for non-azeotropic and near-azeotropic mixtures of different bulk compositions were obtained. It is found that the non-linear physical properties of the mixtures strongly affect the pressure drop characteristics. Both the fluid properties and mass transfer resistance are responsible for the heat transfer characteristics. The mass transfer resistance has a more significant influence on the nucleate boiling than the convective evaporation for non-azeotropic mixtures, while the resistance can be neglected for near-azeotropic mixtures.  相似文献   

3.
In this study, condensation heat transfer coefficients (HTCs) were measured on a horizontal plain tube, low fin tube, and Turbo-C tube at the saturated vapor temperature of 39 °C for R22, R407C, and R410A with the wall subcooling of 3–8 °C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation HTCs were up to 50% lower than those of R22. For R407C, as the wall subcooling increased, condensation HTCs decreased on a plain tube while they increased on both low fin and turbo-C tubes. This was due to the lessening effect of the vapor diffusion film with a rapid increase in condensation rate on enhanced tubes. On the other hand, condensation HTCs of R410A, almost an azeotrope, were similar to those of R22. For all refrigerants tested, condensation HTCs of turbo-C tube were the highest among the tubes tested showing a 3–8 times increase as compared to those of a plain tube.  相似文献   

4.
The quasi local heat transfer coefficients of R22 and R407C in the coaxial counterflow condenser (20 mm ID) of a refrigerating vapour compression plant have been experimentally measured. The experimental conditions under which the heat transfer coefficients were determined reflect a typical working situation for small scale refrigeration systems. The plant runs with low mass fluxes of refrigerant within the range of 45.5–120 kg/m2/s. During the experimental tests the pressure at the inlet of the test condenser varies within a fixed range between 15.2 and 14.3 bar. The results illustrate that the R22 heat transfer coefficient is always greater than that of R407C. Furthermore, comparisons between the experimental data and the values predicted by means of the most credited literature relationships for gravity-driven condensation are reported.  相似文献   

5.
采用分布参数法对平行流冷凝器建立数学模型,对目前广泛使用的制冷剂R134a和低温制冷剂R404A和R410A在平行流冷凝器中的换热和流动性能进行模拟计算和分析比较。分别在相同和不同工况下。比较3种制冷剂的换热系数及压降等换热和流动性能参数。结果表明,在采用平行流冷凝器的汽车空调工况范围内,R410AR404A的流动和传热性能均优于R134a,更适宜用于汽车空调用平行流冷凝器。  相似文献   

6.
A drop-in test of a mixed refrigerant R407C is performed in a commercial screw chiller with shell-and-tube heat exchangers originally designed for R22. The test results show a severe performance reduction when substituting the refrigerant from R22 to R407C. The reason for the performance reduction is analyzed comprehensively, and the influence of thermodynamic properties, compressor efficiency, and heat transfer is evaluated quantitatively. The major factor causing the performance reduction is assessed as the degradation of the heat transfer in using the mixed refrigerant, R407C. The heat transfer degradation in the evaporator is found to be larger and influences more on the chiller performance reduction. The performance reduction caused by the evaporator is approximately two times compared with that of the condenser.  相似文献   

7.
蒸发器中非共沸混合工质的换热特性   总被引:3,自引:0,他引:3  
朱强 《制冷学报》2004,25(1):44-48
为了阐明非共沸混合工质在制冷、空调系统蒸发器中的换热过程,以及混合工质蒸发时的温度滑移现象为工程实际带来的某些特殊性,运用传热及热力学原理进行了相应的理论分析,发现非共沸混合工质的蒸发过程中蒸发介质存在极限流量的现象,并得到此类工质在可用能角度相比纯工质具有节能效果的结论(一般情况下,相对可用能损失减少40%~55%),最后将理论分析结论应用于几种常用的混合工质上,如R407c、R405a和R414b,并预测了这些工质在实际使用中的极限流量和可用能损失情况.  相似文献   

8.
Three methods for comparing cycle performance of working fluids, pure as well as non-azeotropic mixtures, are investigated for two applications and for two mixture pairs, HCFC22-CFC114 and HCFC22-HCFC142b, and their pure components. The methods differ in the way of calculating the heat exchange processes. They assume, respectively, equal minimum approach temperatures, equal mean temperature differences and equal heat transfer areas. Changes of coefficient of performance (COP) with composition are explained for all methods. It is shown that transport properties must be taken into account when making rigorous comparisons between working fluids. To predict the relations between fluids with high accuracy, one must use the method with equal heat transfer areas. By the method with equal mean temperature differences, the COP can be estimated with the same accuracy for mixtures as for pure fluids, and can be used for rough estimations of the COP level with different fluids. The method of equal minimum approach temperatures should be avoided for non-azeotropic mixtures.  相似文献   

9.
The mean heat transfer coefficients of R22 and R407C in the coaxial counterflow evaporator (20 mm ID) of a refrigerating vapour compression plant have been experimentally measured. The experimental conditions under which heat transfer coefficients were determined reflect a typical working situation for small-scale refrigeration systems. The heat flux ranged from 1.9 to 9.1 kW/m2 and the mass flux was varied from 30 to 140 kg/m2 s. The results illustrate that the R22 heat transfer coefficient is always greater than that of R407C. Furthermore, a comparison carried out between the experimental data and those predicted by means of the most credited literature relationships showed a strongly overprediction for R407C coefficients.  相似文献   

10.
This paper presents local heat transfer results obtained during the condensation of Isceon 59, R407C and R404A in a smooth horizontal tube. The results have been compared with existing correlations for condensation heat transfer to assess the validity of these models for refrigerant mixtures. Two correlations (Dobson MK, Chato JC. Condensation in smooth horizontal tubes. Journal of Heat Transfer, Transactions of ASME 1998; 120: 193–213, Shah MM. A general correlation for heat transfer during film condensation inside pipes. Int J Heat & Mass Transfer 1979; 22: 547–56) have been considered because they deal with refrigerant blends and their range of applicability suited the experimental test conditions. The Dobson and Chato correlation provided the best prediction for these refrigerant mixtures. The Shah correlation fitted the measurements of the local heat transfer coefficients well and seem to cope well with refrigerant mixtures.  相似文献   

11.
In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290 (propane) and R1270 (propylene) were tested in a breadboard heat pump in an attempt to substitute HCFC22 used in residential air-conditioners. The heat pump was of 3.5 kW capacity with water as the heat transfer fluid (HTF) in the evaporator and condenser that are in a counter current flow configuration. All tests were conducted with the HTF temperatures fixed to those found in the ARI test A condition. Test results show that ternary mixtures composed of R32, R125, and R134a have a 4–5% higher coefficient of performance (COP) and capacity than HCFC22. On the other hand, ternary mixtures containing R125, R134a and R152a have both lower COPs and capacities than HCFC22. R32/R134a binary mixtures show a 7% increase in COP with the similar capacity to that of HCFC22 while R290/R134a azeotrope shows a 3–4% increases in both COP and capacity. The compressor discharge temperatures of the mixtures tested are much lower than those of HCFC22, indicating that these mixtures would offer better system reliability and longer life time than HCFC22. Finally, test results with a suction line heat exchanger (SLHX) indicate that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.  相似文献   

12.
A study on the prediction of heat transfer coefficient (HTC) and pressure drop of refrigerant mixtures is reported. HTCs and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis. Results indicate that nucleate boiling is suppressed at qualities greater than 20.0% for all mixtures and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8.0–10.0% increase in HTCs. Some mixtures with large volatility difference exhibit as much as 55.0% reduction compared with R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32.0%) and reduced mass flow rates (23.0%). Other mixtures with moderate volatility difference exhibit 20.0–30.0% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall HTC of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10.0% in transport properties causes a change of less than 6% in heat transfer prediction.  相似文献   

13.
Condensing heat transfer for R114/R12 mixtures on horizontal finned tubes   总被引:1,自引:0,他引:1  
Two titanium tubes with external fins were tested in the horizontal orientation to determine heat transfer performance with R114, R12, and selected non-azeotropic mixtures of the two condensing on the outside surface. For the single-component situation, data were in excellent agreement with predictions from a modified Katz-Keller method, and little performance distinction was found between the tubes or between the pure refrigerants. All mixtures depressed performance below single-component levels, with even low second-component concentrations causing substantial degradation (up to 55% performance reduction for 5% R12). Gas chromatograph composition analyses of vapour from the condenser shell showed elevated concentrations of the more volatile component (R12), evidence that an added transport resistance contributed to the observed mixture performance reductions. If previously suggested benefits of mixtures in heat pump applications are to be realized, the associated condensers should be in a configuration so as to mitigate these performance penalties.  相似文献   

14.
An experimental and theoretical investigation was made to find out the reasons for the drop in shell-and-tube condenser performance when replacing R22 with a zeotropic mixture R407C. Measurements show that at lower condenser loads the reduction in performance can be as large as 70% compared to the full condenser load. Calculation results are compared with experimental results for two different condensers, one with micro-finned tubes and one with 3-D finned tubes. Calculations show that the degree of mixing of the newly formed condensate on a tube and the drained condensate is a factor influential enough to explain the performance drop. 3-D finned tubes seem to have better mixing in the condensate than integral finned tubes.  相似文献   

15.
A performance evaluation of minichannel parallel flow (MCPF) condenser in residential/commercial refrigeration system has been carried out in calorimeter room with wind tunnel in this paper. The heat rejection and pressure drop characteristics for heat exchangers were compared using R22, R410A and R407C as working fluids. The experimental results showed that heat rejection of MCPF condenser with R410A was higher than that of R22 and R407C by 15.6~26.3% and 12.3~22.7% under full and partial load conditions, respectively. The refrigerant side pressure drop trend of R410A in MCPF condenser was smaller than that of R22 and R407C under the same mass flow rate.  相似文献   

16.
Performance of a heat pump system using hydrocarbon refrigerants has been investigated experimentally. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as working fluids in a heat pump system. The heat pump system consists of compressor, condenser, evaporator, and expansion device with auxiliary facilities such as evacuating and charging unit, the secondary heat transfer fluid circulation unit, and several measurement units. Performance of each refrigerant is compared at several compressor speeds and temperature levels of the secondary heat transfer fluid. Coefficient of performance (COP) and cooling/heating capacity of hydrocarbon refrigerants are presented. Experimental results show that some hydrocarbon refrigerants are comparable to R22. Condensation and evaporation heat transfer coefficients of selected refrigerants are obtained from overall conductance measurements for subsections of heat exchangers, and compared with those of R22. It is found that heat transfer is degraded for hydrocarbon refrigerant mixtures due to composition variation with phase change. Empirical correlations to estimate heat transfer coefficients for pure and mixed hydrocarbons are developed, and they show good agreement with experimental data. Some hydrocarbon refrigerants have better performance characteristics than R22.  相似文献   

17.
An experimental study of a fin and tube condenser was performed using two different configurations of condenser paths (U and Z type) and two kinds of refrigerants (R-22 and R-407C) as working fluids. An integral test facility was constructed to evaluate the heat transfer capacity of the air and refrigerant sides of the condenser. An uncertainty study was also performed. A numerical code was developed, using a section-by-section analysis scheme in which mal-distribution on the air side and temperature gliding on the refrigerant side could be considered along the tube-length direction. Different condenser capacities were obtained from both the experimental and numerical results, depending on the paths and refrigerants used. R-22 performed better than R-407C for the Z-type path configuration, but no significant difference was found between results using either refrigerant in the U-type path configuration. On average, the numerical results obtained with R-22 were 10.1% greater than experiment data; using R-407C, results were 10.7% less than experiment data. The numerical code can be used as a design tool to develop better condenser paths.  相似文献   

18.
针对目前替代R22应用比较广泛的R407C和R410A存在的一些问题,提出一种由丙烷R290和二氟乙烷R152a组成的混合制冷剂来替代R22,分析该混合制冷剂的环境影响指数、安全特性和润滑油等问题,并针对不同配比情况下的温度滑移特性、热力学特性和循环特性进行了理论研究,与R407C和R410A进行了对比,得出R290质量分数在50%~90%之间时组成的混合制冷剂是一种对环境危害很小,温度滑移很小,具有合适的压比和COP,润滑特性很好的优良近共沸制冷剂,用于替代R22优于R407C和R410A。  相似文献   

19.
Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A inside horizontal plain and microfin tubes of 9.52 mm outside diameter and 1 m length were measured at the condensation temperature of 40 °C with mass fluxes of 100, 200, and 300 kg m−2 s−1 and a heat flux of 7.7–7.9 kW m−2. For a plain tube, HTCs of R134a and R410A were similar to those of R22 while HTCs of R407C are 11–15% lower than those of R22. For a microfin tube, HTCs of R134a were similar to those of R22 while HTCs of R407C and R410A were 23–53% and 10–21% lower than those of R22. For a plain tube, our correlation agreed well with the present data for all refrigerants exhibiting a mean deviation of 11.6%. Finally, HTCs of a microfin tube were 2–3 times higher than those of a plain tube and the heat transfer enhancement factor decreased as the mass flux increased for all refrigerants tested.  相似文献   

20.
Heat transfer devices are provided in many refrigeration systems to exchange energy between the cool gaseous refrigerant leaving the evaporator and warm liquid refrigerant exiting the condenser. These liquid-suction or suction-line heat exchangers can, in some cases, yield improved system performance while in other cases they degrade system performance. Although previous researchers have investigated performance of liquid-suction heat exchangers, this study can be distinguished from the previous studies in three ways. First, this paper identifies a new dimensionless group to correlate performance impacts attributable to liquid-suction heat exchangers. Second, the paper extends previous analyses to include new refrigerants. Third, the analysis includes the impact of pressure drops through the liquid-suction heat exchanger on system performance. It is shown that reliance on simplified analysis techniques can lead to inaccurate conclusions regarding the impact of liquid-suction heat exchangers on refrigeration system performance. From detailed analyses, it can be concluded that liquid-suction heat exchangers that have a minimal pressure loss on the low pressure side are useful for systems using R507A, R134a, R12, R404A, R290, R407C, R600, and R410A. The liquid-suction heat exchanger is detrimental to system performance in systems using R22, R32, and R717.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号