首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
苗世举  陈赞  郭宇  臧毅华 《广东化工》2022,(13):66-69+61
以4,4’-(六氟异丙基)二酞酸酐(6FDA)和2,6-二氨基甲苯(2,6-DAT)为原料,合成6FDA-2,6DAT型聚酰亚胺,通过引入酸化碳纳米管(MWCNTs-COOH)填料,利用热致相分离法制备了酸化碳纳米管/聚酰亚胺(MWCNTs-COOH/PI)型混合基质膜(MMMs)。通过红外光谱(FT-IR)、扫描电镜(SEM)、X-射线衍射(XRD)及气体渗透仪对混合基质膜的结构和性能进行了表征和分析,并考察了不同掺杂量的酸化碳纳米管对混合基质膜的二氧化碳分离性能影响。结果表明,MWCNTs-COOH的一维光滑孔道结构与聚合物间形成的非贯穿孔状缺陷可以为气体的传输提供了高速通道,显著增强了气体的渗透性;其次,填料的表面官能团可以增强对CO2的吸附选择性,从而提高了混合基质膜的CO2分离性能。相比于纯聚酰亚胺膜,MWCNTs-COOH掺杂量为2.0wt%的混合基质膜的二氧化碳渗透系数88.28 Barrer、二氧化碳/甲烷选择性为52.45、二氧化碳/氮气选择性为28.64,分别提高了128.08%、43.65%和35.58%。  相似文献   

2.
混合基质膜(MMMs)在气体分离领域具有良好的应用前景,金属有机框架(MOFs)由于具有高孔隙率和有机连接基团,常被用作填料制备MMMs。但由于MOFs与聚合物的界面相容性问题,MMMs的气体分离性能提升受到限制。本文合成了功能化的Zr-MOF(UiO-66-AC),并利用其与聚醚共聚酰胺(Pebax)共同制备了混合基质膜。填料中引入的羰基和羧基等基团提供了MOFs与聚合物基质之间较强的界面相互作用。与纯Pebax膜相比,UiO-66-AC/Pebax MMMs的气体渗透性能得到了显著提高。当填料质量分数为6%时,膜的CO2渗透系数为102.4 Barrer,CO2/N2和CO2/CH4选择性分别为90.6和26.0,CO2/N2分离性能突破了Robeson上限(2008),表明该混合基质膜在CO2的分离应用上具有潜力。  相似文献   

3.
混合基质膜(MMMs)是结合了无机填料和有机基质特点的一类膜材料,因其在气体分离应用上具有良好的渗透通量和分离性能被广泛关注。无机填料诸如二氧化硅纳米颗粒球、沸石分子筛、金属有机框架(MOF)、氧化石墨烯(GO)、碳纳米管(CNT)均被广泛应用于混合基质膜的制备,但是碍于无机填料在有机相中的分散性问题、两相相容性问题和界面缺陷问题,常会导致较差的气体分离性能。针对近年通过对无机填料进行表面官能化修饰、共价交联、多元填充、调控形貌等来改善混合基质膜气体分离性能的研究进行总结和阐述,并对其未来的发展趋势进行了展望。  相似文献   

4.
CO2分离膜技术是有效减少温室气体排放和能源气体净化的重要手段。设计制备新型混合基质膜(Mixed matrix membranes, MMMs)是同时提高膜的渗透性和选择性的有效途径。MMMs在多种膜分离材料中表现出了优异的CO2分离性能,并且其具有潜在的克服trade-off效应的前景,因此被研究者广泛关注。MMMs中的填充剂对其分离性能起到至关重要的作用。首先介绍了MMMs中CO2的传递机制,从传统型填充剂和新型填充剂入手,总结了近年来MMMs中不同种类的填充剂在膜基质中起到的作用以及对CO2分离性能影响的研究进展。最后,对MMMs用于CO2分离未来的发展进行了展望。  相似文献   

5.
二氧化碳的分离和捕获对可持续发展具有重要意义。聚醚酰亚胺(PEI)具有优异的耐溶剂、耐高温、选择性高等优势,然而CO2渗透性能低成为限制其进一步发展的关键瓶颈。通过引入2种三维MOFs颗粒[UIO-66和MIL-101(Cr)]及2种二维MOFs纳米片[CuBDC和Zn2(bim)4]制备了4种MOFs/PEI混合基质膜(MMMs),对膜的物理化学性质及CO2分离性能展开深入研究。结果表明MOFs的引入大幅提高了PEI膜的CO2扩散系数及分离性能,并改善了PEI膜的抗CO2塑化性能。同时,相比三维MOFs颗粒,二维CuBDC纳米片与PEI表现出更高的相容性,其填料含量为20%时MMMs的CO2渗透通量相比纯PEI膜提高了3.5倍,其CO2/CH4选择性提高了2.2倍。以二维MOFs纳米片为功能性填料制备混合基质膜用于CO2分离是一种有效的策略。  相似文献   

6.
制备高性能的气体分离膜,是实现CO2高效回收的关键。为了提高CO2分离膜的性能,将中空管状结构的埃洛石纳米管(HNTs)添加到聚乙烯胺(PVAm)中配制涂膜液,并将PVAm-HNTs涂膜液涂覆到聚砜(PSf)超滤膜上制备PVAm-HNTs/PSf混合基质膜。其中PSf超滤膜作为支撑层,PVAm-HNTs致密涂层作为功能层,功能层结构与形态对CO2分离具有关键作用。采用XRD、SEM对HNTs的结构与形态进行表征,并借助FTIR和SEM对膜的形态与结构进行分析。在进料气为纯气条件下,系统地研究了HNTs添加量、进料压力、PVAm-HNTs涂层厚度对PVAm-HNTs/PSf膜的CO2分离性能影响,并考察了混合基质膜的CO2/N2混合气分离性能。结果显示:在水溶液中显示正电性的PVAm与负电性的HNTs具有较好的界面相容性。HNTs添加量为1%(质量)、PVAm-HNTs湿涂层厚度为50 μm的混合基质膜,表现出最优的CO2分离性能。在进料气压力为0.1 MPa、测试温度为25℃、CO2/N2(15/85,体积比)混合气进料的条件下,膜的CO2渗透速率为178 GPU,CO2/N2选择性为83;该膜具有较好的稳定性,经过120 h运行后,渗透性和选择性仍能保持稳定。  相似文献   

7.
王维  姜雪迎  李悦  苏丽萍  邹昀  童张法 《化工学报》2020,71(8):3807-3818
为了实现低能耗且高效分离乙酸乙酯中的低含量水分,选用亲水型纳米ZSM-5沸石分子筛材料作为改性剂,填充到聚乙烯醇(PVA)聚合物中制备PVA/ZSM-5混合基质膜(MMMs)。采用SEM、FTIR、XRD、TGA和接触角测量仪等对膜材料的形态、物化性质进行表征分析,并考察膜材料在不同溶液中的溶胀行为以及通过单因素实验探究填料含量、进料温度、进料浓度对渗透汽化分离乙酸乙酯和水混合物的性能的影响。结果表明,ZSM-5与PVA结合紧密且分散均匀,除了ZSM-5固有的亲水性外,ZSM-5还与PVA分子之间存在氢键相互作用,但两者之间并没有发生化学作用。随着进料浓度的增加,渗透通量增大,而分离因子呈减小趋势;随着进料温度升高,渗透通量和分离因子均增大;随着ZSM-5填充量的增加,渗透通量和分离因子均先增大后减小。当ZSM-5填充量为6%(质量)时,渗透通量和分离因子达到最大值,分别为1231 g/(m2·h)和6072,相比纯PVA膜分离指数(PSI)提高了2.9倍。新设计的PVA/ZSM-5混合基质膜(MMMs)可在工业水平上用于乙酸乙酯及其他类似化合物的脱水。  相似文献   

8.
选取咪唑型离子液体修饰金属有机框架填料ZnBDC制备IL@ZnBDC纳米复合填料,通过物理共混的方式将其引入PI中制备PI-IL@ZnBDC混合基质膜。结果表明,复合填料的引入改善了填料与PI间的相容性,增加了混合基质膜的分子链间距,强化了膜内CO2扩散过程。同时,离子液体中含有与CO2有较强亲和作用的三氟甲基、磺酸基团和咪唑基团,促进了CO2在膜内的溶解,进而协同强化了PI-IL@ZnBDC混合基质膜的溶解-扩散机制,提升了CO2气体通量和选择性。相较于纯PI膜,PI-IL@ZnBDC-2膜表现出优异的气体分离性能,CO2的渗透系数为10.97 Barrer, CO2/CH4的选择性为42.21,分别较纯膜提升了59.9%和41.5%。  相似文献   

9.
靳卓  王永洪  张新儒  白雪  李晋平 《化工学报》1951,73(10):4527-4538
为了获得高性能的CO2/N2分离膜,把空气中氧刻蚀的二硫化钼(a-MoS2)和金属有机框架材料MIP-202通过机械力化学反应制备的双功能填料作为分散相,聚醚嵌段酰胺(Pebax-1657)作为连续相,采用溶液浇铸法制备了Pebax/a-MoS2/MIP-202混合基质膜。采用FT-IR表征了填料的化学结构,借助ATR-FTIR、SEM、TG和力学性能测试表征了混合基质膜的化学结构、微观形貌结构、热稳定性和物理力学性能。研究了水含量、双功能填料配比、含量、膜两侧压差和操作温度对膜气体分离性能的影响,并考察了模拟烟道气(CO2/N2体积比15/85)条件下混合基质膜的长时间运行稳定性。结果表明:在温度为25℃、膜两侧压差为0.1 MPa的操作条件下,a-MoS2与MIP-202质量比为5∶5和双功能填料含量为6%(质量)时,膜的气体分离性能达到最优,CO2渗透性和CO2/N2选择性分别为380 Barrer和124.7,超过了2019年McKeown等提出的上限值。连续测试360 h后,混合基质膜的性能没有明显降低,其平均CO2渗透性和CO2/N2选择性分别为358 Barrer和120.1。这主要是由于a-MoS2和MIP-202协同提高了膜的气体分离性能。  相似文献   

10.
制备高性能的气体分离膜,是实现CO_2高效回收的关键。为了提高CO_2分离膜的性能,将中空管状结构的埃洛石纳米管(HNTs)添加到聚乙烯胺(PVAm)中配制涂膜液,并将PVAm-HNTs涂膜液涂覆到聚砜(PSf)超滤膜上制备PVAm-HNTs/PSf混合基质膜。其中PSf超滤膜作为支撑层,PVAm-HNTs致密涂层作为功能层,功能层结构与形态对CO_2分离具有关键作用。采用XRD、SEM对HNTs的结构与形态进行表征,并借助FTIR和SEM对膜的形态与结构进行分析。在进料气为纯气条件下,系统地研究了HNTs添加量、进料压力、PVAm-HNTs涂层厚度对PVAm-HNTs/PSf膜的CO_2分离性能影响,并考察了混合基质膜的CO_2/N_2混合气分离性能。结果显示:在水溶液中显示正电性的PVAm与负电性的HNTs具有较好的界面相容性。HNTs添加量为1%(质量)、PVAm-HNTs湿涂层厚度为50μm的混合基质膜,表现出最优的CO_2分离性能。在进料气压力为0.1 MPa、测试温度为25℃、CO_2/N_2(15/85,体积比)混合气进料的条件下,膜的CO_2渗透速率为178 GPU,CO_2/N_2选择性为83;该膜具有较好的稳定性,经过120 h运行后,渗透性和选择性仍能保持稳定。  相似文献   

11.
利用金属-有机骨架UTSA-280具有特定刚性尺寸的一维孔道可以筛分CO2、CH4、N2的特性,采用机械化学研磨法减小其颗粒尺寸,将UTSA-280掺入聚砜(PSf)中制备MOF基混合基质膜,用于天然气提纯和烟道气CO2捕获。结果表明,在PSf中掺入UTSA-280不仅可以增加聚合物的CO2渗透通量而且提高了气体分离选择性。当UTSA-280掺杂量为30%(质量)时,混合基质膜对CO2/CH4、CO2/N2的分离因子分别为56.39和53.17,CO2的渗透通量为18.61 Barrer,相对于PSf纯膜,选择性分别提高了47.3%和63.5%,CO2渗透通量提高了128.9%,打破了“trade-off”效应。该工作通过引进具有分子筛分效应的MOF填料,能够增加气体通量的同时提高混合基质膜对含CO2气体的分离性能,对天然气的提纯以及烟道气的CO2的捕获有重要意义。  相似文献   

12.
自聚微孔聚合物(PIM-1)虽具有良好的CO2渗透性能,但其气体选择性普遍较差,限制其在CO2/CH4分离领域的应用。本文以N,N-二甲基甲酰胺(DMF)为溶剂制备ZIF-8纳米粒子,将其引入到羧基化的PIM-1基质中,制备了cPIM-1/ZIF-8混合基质膜,用于CO2/CH4分离。结果表明:由于合成ZIF-8的溶剂也是cPIM-1的良溶剂,使得两者之间具有良好的界面相容性,从而使ZIF-8添加量高达质量分数45%。随着ZIF-8添加量的增加,膜的CO2渗透速率持续增加,CO2/CH4选择性呈现先上升后下降的趋势。当ZIF-8添加量为质量分数25%时,膜的CO2/CH4分离性能最好,即CO2渗透系数为3942 Barrer,CO2/CH4选择性为18.7,较cPIM-1纯膜分别提高了 84%和43%,成功地超越了Robeson分离上限。  相似文献   

13.
宁梦佳  代岩  郗元  章星  刘红晶  贺高红 《化工进展》2021,40(10):5652-5659
为了提高Pebax-1657的CO2分离性能,本文制备了对CO2有吸附作用的金属有机骨架Cu(Qc)2,将其加入到Pebax-1657基质中,制备混合基质膜,用于CO2的气体分离。通过扫描电子显微镜、热重分析、红外光谱和X射线衍射对溶液浇铸法制备的膜进行表征,通过膜的气体渗透性能测试考察填料含量、操作压力和混合气对膜气体渗透性能的影响。结果表明,Cu(Qc)2在Pebax基质中随机有效地堆叠形成了高选择性的气体传输通道,极大地提高了CO2/N2的选择性。随着Cu(Qc)2填充量的增加,CO2渗透系数和CO2/N2选择性均呈现先上升后下降的趋势。当Cu(Qc)2的质量分数为3%时,呈现最佳的CO2/N2分离性能,CO2 渗透系数和CO2/N2选择性分别为102Barrer和84,与Pebax-1657膜相比,分别提高了45.7%和40.0%,突破了Robeson分离上限,表明该混合基质膜在CO2的分离应用上具有潜力。  相似文献   

14.
靳卓  王永洪  张新儒  白雪  李晋平 《化工学报》2022,73(10):4527-4538
为了获得高性能的CO2/N2分离膜,把空气中氧刻蚀的二硫化钼(a-MoS2)和金属有机框架材料MIP-202通过机械力化学反应制备的双功能填料作为分散相,聚醚嵌段酰胺(Pebax-1657)作为连续相,采用溶液浇铸法制备了Pebax/a-MoS2/MIP-202混合基质膜。采用FT-IR表征了填料的化学结构,借助ATR-FTIR、SEM、TG和力学性能测试表征了混合基质膜的化学结构、微观形貌结构、热稳定性和物理力学性能。研究了水含量、双功能填料配比、含量、膜两侧压差和操作温度对膜气体分离性能的影响,并考察了模拟烟道气(CO2/N2体积比15/85)条件下混合基质膜的长时间运行稳定性。结果表明:在温度为25℃、膜两侧压差为0.1 MPa的操作条件下,a-MoS2与MIP-202质量比为5∶5和双功能填料含量为6%(质量)时,膜的气体分离性能达到最优,CO2渗透性和CO2/N2选择性分别为380 Barrer和124.7,超过了2019年McKeown等提出的上限值。连续测试360 h后,混合基质膜的性能没有明显降低,其平均CO2渗透性和CO2/N2选择性分别为358 Barrer和120.1。这主要是由于a-MoS2和MIP-202协同提高了膜的气体分离性能。  相似文献   

15.
李皓  杜乃旭  杨凯  代岩  贺高红 《化工进展》2016,35(12):3970-3975
金属有机骨架Cu-BTC广泛用于气体分离混合基质膜的制备。为了避免混合基质膜传统制备方法周期较长的缺点,本实验将Cu-BTC前体分别与乙基纤维素(EC)溶液混合后进行反应,实现了Cu-BTC在EC溶液中的快速合成。并利用这一特性制备了Cu-BTC/EC膜。利用扫描电子显微镜、X射线晶体衍射、红外吸收光谱对产品表征,确定了Cu-BTC在膜中的分布情况。实验发现EC浓度的提高对Cu-BTC前体的反应有明显的促进作用。通过Cu-BTC/EC膜的热性能和力学性能测试,发现Cu-BTC和EC的界面强度随Cu-BTC含量的提高先增加后降低。在Cu-BTC质量分数为26%时,膜的CO2渗透系数为112.3barrer,相对于纯EC膜(66.3barrer)提高了69%,且CO2/CH4和CO2/N2选择性几乎没有下降。最后考察了测试压力对气体渗透系数的影响,结果表明Cu-BTC/EC膜相对于纯EC膜具有更好的耐CO2溶胀能力。  相似文献   

16.
为了实现混合基质膜中CO2的高效分离,设计了羧基化多壁碳纳米管(CNT)和氨基化β-环糊精金属有机骨架(β-CD MOF)双填料(CM),并将其引入磺化聚醚醚酮(SPEEK)基质中,在膜内同时构建CO2扩散通道和亲和位点,增强了混合基质膜的分离性能。采用FTIR和BET表征了CM的化学结构和孔结构,借助膜的SEM、FTIR和力学性能表征了填料-聚合物界面相互作用。研究了CM的合成比例、含量、压力、温度和混合气等因素对混合基质膜分离性能的影响。结果表明:CM与SPEEK之间具有良好的相容性并为气体分子提供了快速的传递通道。在改性CNT与MOF的质量比为5∶5、添加量为7%(质量)以及0.1 MPa和25℃的条件下,混合基质膜的分离性能最优,CO2渗透性为844 Barrer,CO2/N2选择性为84,与纯SPEEK膜相比,分别提升了178%和163%,超过2019年上限。羧基化CNT的直孔通道缩短了CO2的扩散路径,同时改性β-CD MOF表面的氨基载体提升了CO2的溶解性,两者协同提高了混合基质膜的分离性能。此外,负载双填料的膜比单独负载相同含量的羧基化CNT或氨基化MOF的膜具有更好的分离性能。在360 h的测试过程中,混合基质膜保持较好的分离稳定性。  相似文献   

17.
为了实现混合基质膜中CO2的高效分离,设计了羧基化多壁碳纳米管(CNT)和氨基化β-环糊精金属有机骨架(β-CD MOF)双填料(CM),并将其引入磺化聚醚醚酮(SPEEK)基质中,在膜内同时构建CO2扩散通道和亲和位点,增强了混合基质膜的分离性能。采用FTIR和BET表征了CM的化学结构和孔结构,借助膜的SEM、FTIR和力学性能表征了填料-聚合物界面相互作用。研究了CM的合成比例、含量、压力、温度和混合气等因素对混合基质膜分离性能的影响。结果表明:CM与SPEEK之间具有良好的相容性并为气体分子提供了快速的传递通道。在改性CNT与MOF的质量比为5∶5、添加量为7%(质量)以及0.1 MPa和25℃的条件下,混合基质膜的分离性能最优,CO2渗透性为844 Barrer,CO2/N2选择性为84,与纯SPEEK膜相比,分别提升了178%和163%,超过2019年上限。羧基化CNT的直孔通道缩短了CO2的扩散路径,同时改性β-CD MOF表面的氨基载体提升了CO2的溶解性,两者协同提高了混合基质膜的分离性能。此外,负载双填料的膜比单独负载相同含量的羧基化CNT或氨基化MOF的膜具有更好的分离性能。在360 h的测试过程中,混合基质膜保持较好的分离稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号