首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
从量级尺度大幅度提高产能是实现天然气水合物(以下简称水合物)产业化开采的关键,而水合物开采能否产业化又取决于原地可采储量能否支撑产业化开采所需要的基本开采周期,以及开采产能能否达到当前产业化开采的标准。为了给水合物开发技术研究提供参考,从海域水合物增产理论与技术学科体系建设的角度,结合国内外水合物实验模拟和数值模拟研究成果,分析了潜在的水合物增产技术,提出了水合物开采增产的基本原理、评价方法及目前存在的技术瓶颈。研究结果表明:①复杂结构井、多井井网、新型开采方法、储层改造是实现天然气水合物增产的主要途径,其增产机理可归纳为扩大泄流面积、提高分解效率、改善渗流条件等三个方面;②复杂结构井和井网是提高水合物产能的根本,基于复杂结构井和井网系统辅助加热或进行储层改造,能从量级尺度提高水合物的产能;③制样技术、储层监测技术和力学场耦合技术是目前水合物增产基础研究的主要技术瓶颈,建议“十四五”期间国家水合物应用基础研究的重点应关注上述技术瓶颈。结论认为,以水平井或多分支井为代表的复杂结构井、以多井簇群井开采为代表的井网开采模式、以降压辅助热激发为主的开采新方法、以水力造缝为代表的储层改造技术的联合应用等,是实现水合物产能量级提升的关键。  相似文献   

2.
从量级尺度大幅度提高产能是实现天然气水合物(以下简称水合物)产业化开采的关键,而水合物开采能否产业化又取决于原地可采储量能否支撑产业化开采所需要的基本开采周期,以及开采产能能否达到当前产业化开采的标准。为了给水合物开发技术研究提供参考,从海域水合物增产理论与技术学科体系建设的角度,结合国内外水合物实验模拟和数值模拟研究成果,分析了潜在的水合物增产技术,提出了水合物开采增产的基本原理、评价方法及目前存在的技术瓶颈。研究结果表明:①复杂结构井、多井井网、新型开采方法、储层改造是实现天然气水合物增产的主要途径,其增产机理可归纳为扩大泄流面积、提高分解效率、改善渗流条件等三个方面;②复杂结构井和井网是提高水合物产能的根本,基于复杂结构井和井网系统辅助加热或进行储层改造,能从量级尺度提高水合物的产能;③制样技术、储层监测技术和力学场耦合技术是目前水合物增产基础研究的主要技术瓶颈,建议"十四五"期间国家水合物应用基础研究的重点应关注上述技术瓶颈。结论认为,以水平井或多分支井为代表的复杂结构井、以多井簇群井开采为代表的井网开采模式、以降压辅助热激发为主的开采新方法、以水力造缝为代表的储层改造技术的联...  相似文献   

3.
天然气水合物97%的资源量分布在海洋,且主要在深海区。作为一种潜在的新能源,世界科技大国竞相开展相关研究攻关和现场试采试验。我国于2017年和2020年两次在南海海域成功实施天然气水合物试采,创造了产气总量最大、日均产气最高的两项世界纪录。日本也开展了两次海域天然气水合物试采。基于我国海域天然气水合物资源勘查和试采现状,指出产业化关键影响因素包括试采工艺技术、产业政策等。应着力加快深海泥质粉砂矿体的资源评价和开采技术研发,带动深海钻探及采气装备制造国产化,建议政府、企业、产业加强协作,加快推进我国海域天然气水合物产业化进程。  相似文献   

4.
天然气水合物已越来越成为油气工业关注的热点。近年在资源领域的研究和实地勘探、试采以及模拟研究中得到较快发展。通过分析目前几种水合物开采技术的优缺点,探讨了不同天然气水合物储藏形式下的开采方式,并介绍了国外实地试采研究中几种开采技术的使用情况和国内水合物藏不同开采方式的模型模拟研究,为今后天然气水合物的开采和研究提供了一定的方向和启示。  相似文献   

5.
天然气水合物是一种清洁高效的潜在替代能源,提高开采效率对促进其产业化发展具有重要意义.本文借助开源程序HydrateResSim,针对具有强封闭性边界的第三类水合物藏薄层进行了直井和径向井降压开采天然气水合物产能模拟,对比了直井和径向井降压开采过程中温度场、压力场、水合物饱和度及产能变化规律,分析了径向井降压开采增产机...  相似文献   

6.
调研了国内外天然气水合物开采技术研究进展,基于无量纲相似分析方法研制了三维可视天然气水合物开采模拟实验系统。以甲烷、水和石英砂为实验介质,开展了降压、注热、注剂等天然气水合物开采方法三维实验模拟分析。根据室内模拟实验和数值模拟分析结果,提出了海上天然气水合物试采的技术思路,以期为天然气水合物试采及深水工程的研究提供借鉴。  相似文献   

7.
调研了国内外天然气水合物开采技术研究进展,基于无量纲相似分析方法研制了三维可视天然气水合物开采模拟实验系统。以甲烷、水和石英砂为实验介质,开展了降压、注热、注剂等天然气水合物开采方法三维实验模拟分析。根据室内模拟实验和数值模拟分析结果,提出了海上天然气水合物试采的技术思路,以期为天然气水合物试采及深水工程的研究提供借鉴。  相似文献   

8.
针对海洋天然气水合物开发技术与常规海洋油气开发技术的异同,分析了海洋天然气水合物储层特性和试采面临的挑战,介绍了天然气水合物试采关键技术,包括控压钻井技术、套管钻井技术、抑制性钻井液、钻井液冷却系统、低温低放热水泥浆体系、完井技术、开采方式优选和储层及环境监测技术等,指出了我国海洋天然气水合物试采应围绕水合物物理力学性质、安全成井、连续排采与防砂、开采方法适应性评价、试采过程储层参数和地层形变监测等技术难题开展研究,通过示范工程,形成海洋天然气水合物试采技术体系,为我国海洋天然气水合物的高效开发提供技术支撑。   相似文献   

9.
海洋天然气水合物由于赋存资源量大、埋藏深度浅、能量密度高等特点,成为了一种极具开采价值的清洁能源。然而,由于海洋水合物的赋存环境和储层特性,当前以降压为主要方法的水合物试采出现了“单井产量低、开采时间短、砂堵无法解决”等技术瓶颈,严重制约了水合物的产业化进程。文章从如何提高低渗储层开采效率、解决砂堵等角度出发,基于安全高效、环保低碳的理念,创新性地提出了“储层改造技术、多井联采和气举排砂开采”组合技术方案。通过室内测试得出研发的储层改造剂固化后使土样抗压强度至少提高了78.5%,垂直渗透系数提高了17.8倍。数值模拟结果显示,在注入压力15.6 MPa、气体注入速度1.5 m/s的条件下,流体的稳定上返速度达到了10~14 m/s,能够有效将井底的沉砂排到井口。通过上述研究验证了储层改造和气举排砂的可行性,为提高储层渗透性、解决砂堵提供了新的方法,有助于支撑海洋天然气水合物高效、长期、绿色开发。  相似文献   

10.
正2017年12月19日,在南海天然气水合物勘查与开发高端论坛上,中国地质调查局广州海洋地质调查局总工程师、首席科学家杨胜雄教授透露,目前他们正在建设开采先导实验区,已进行前期论证和实施方案准备等一系列工作,以加快海域试采进程,推进天然气水合物产业化。  相似文献   

11.
中国南海北部大陆坡具有良好的天然气水合物(以下简称水合物)资源前景,但目前还没有针对海洋水合物藏开采潜力的地质评价指标,无法对水合物藏进行简单高效的开采潜力评价预测。为此,重点分析了与产气潜力密切相关的地质参数(水合物层的孔隙度,水合物初始饱和度,储层渗透率,导热系数,储层上、下盖层的渗透性,储层的初始温度和初始压力)对产气潜力的影响情况。结果发现,在其他条件和参数不变的情况下:①水合物储层孔隙度越大,水合物分解产气速率越快;②水合物饱和度越高,初始产气效率较低,但总体产气开发效益较高;③水合物储层绝对渗透率越大,水合物分解和产气效率越高;④水合物储层导热系数对水合物分解产气效率影响不大;⑤盖层的存在有利于提高水合物的分解效率和气体的长期稳定生产;⑥水合物储层初始温度越高越有利于水合物快速分解;⑦当地层初始压力越高且离水合物相平衡边界越近时,水合物藏产气开发效率也越高。在此基础上,提出了水合物开采潜力地质评价指标研究的目标、内容、技术路线和方法。  相似文献   

12.
非常规油气资源发展现状及关键问题   总被引:12,自引:1,他引:12  
我国非常规油气资源非常丰富,加快对其的开发利用对确保国家能源安全具有重要的战略意义。为此介绍了我国煤层气、油砂、油页岩、页岩气、天然气水合物、致密砂岩气等非常规油气的资源状况,分析了国家对非常规油气资源的战略需求。结论指出,为加快我国非常规油气资源开发利用步伐,需对以下非常规油气领域的关键科学问题开展攻关:油砂成矿规律及提高分离效率基础研究、油页岩成矿规律及原位开采基础研究、页岩气成藏机制及高效开采基础研究、致密砂岩气成藏机理及开采基础研究、天然气水合物成藏富集规律及开采工艺基础研究。  相似文献   

13.
天然气水合物成藏系统的研究对于认识具有强非均质性的天然气水合物的资源分布、预测其甜点、提高其勘探成效具有重要的意义。通过综合分析天然气水合物在成藏条件、成藏要素和成藏模式等方面的研究认识和勘探成果,综述了天然气水合物成藏系统在气源、稳定带特征及影响因素、储层类型与特征、运移通道类型和成藏模式等方面的研究新进展。天然气水合物的气源可分为生物气、深部热解气和混合气3种类型;水合物的储层类型包括软泥、粉砂质泥和粉砂等多种类型;在粒度较粗的储层中,水合物的含气饱和度往往相对较高;断层、裂隙、底辟构造、气烟囱和高渗透性地层等是天然气水合物的有效运移通道。前人依据气源及其与水合物稳定带的配置关系、水合物的生成速度与分解速度的消长关系、水合物形成的主控因素、运移通道的类型等建立了多种水合物成藏模式,但对于成藏过程中各成藏要素的时空演化及耦合关系、成藏效率的定量评价等研究仍不足,有必要将天然气从气源灶运移至稳定带的动力学过程与稳定带内天然气的运移、聚集、分解和散失的动力学过程有机结合起来开展研究。采用成藏动力学定量研究的思路和方法,应用大数据和人工智能等新技术来定量表征天然气水合物的成藏要素及其时空演...  相似文献   

14.
天然气水合物试采实践表明,电潜泵是降压开采天然气水合物最适宜的人工举升工艺。综合考虑复杂的分采管柱、周围海水环境的温度场、电潜泵和气液分离器等多种因素的影响,建立了降压开采海域天然气水合物电潜泵排采的井筒气液两相流模型,分析了不同管线的传热过程,预测不同管线的流型分布、温度和压力剖面等,并利用该模型进行生产优化。研究结果表明,在天然气水合物降压开采过程中,通过增加井口回压或电潜泵频率能够降低采气管线中的动液面高度,从而降低采气管线连续出水的风险。该研究为降压开采海域天然气水合物电潜泵排水采气的生产优化提供参考依据。  相似文献   

15.
天然气水合物是一种具有巨大潜能的新型非常规能源资源,其对常规油气藏可起到很好的封盖作用。以国内外天然气水合物的研究成果和进展为基础,通过讨论天然气水合物的形成机制、演化特征以及 分布规律,系统分析了天然气水合物可以得天独厚地封盖油气藏的机理,探讨了其对油气藏尤其是气藏聚集和保存的控制和,提出了天然气水合物聚集和保存油气的多类地质模式,如垂向遮挡和侧向遮挡、披覆遮挡和接解遮挡以及同生遮挡和后生遮挡竺  相似文献   

16.
苏里格气田井下节流技术   总被引:8,自引:2,他引:6  
苏里格气田属于低压、低渗气田,产气量低,地层能量衰减快,容易产生水合物和井筒积液,影响正常的生产。为此,分析了井下节流器对压力、温度的影响,发现井下节流器能够在低产气量下起到防止水合物产生、提高提高气体携液能力、减缓井底压力激动等作用。苏里格气田实行早期井下节流技术,能够达到减少甲醇注入量、延长气井稳产时间、提高最终的经济效益,这在现场实践中也得到了证明。  相似文献   

17.
全球天然气水合物资源丰富,被世界各国视为未来石油和天然气的战略性接替能源。天然气水合物主要分布于深水海底浅层和陆地冻土区中,其中海域天然气水合物资源较为丰富,然而,目前海域天然气水合物储层钻完井工程实践较少,存在着许多技术难题和挑战。为了研究和应用海域天然气水合物地层钻完井技术,介绍了美国、日本、印度、中国等国家海域天然气水合物地层的钻探与试采活动,分析了海域天然气水合物地层钻完井技术发展现状,指出在天然气水合物地层钻完井工程中存在的基础性技术难题主要包括钻井液密度窗口窄、天然气水合物相变、井壁失稳、井口不稳定性、出砂防砂等。此外,针对钻完井工程存在的技术难题,对海域天然气水合物地层控压钻井、套管钻井、水平井钻井、防砂和钻井液等关键技术的未来发展进行了展望分析,以期为我国海域天然气水合物地层安全高效钻完井设计提供参考。  相似文献   

18.
发电厂烟气开采天然气水合物过程能效模拟   总被引:1,自引:0,他引:1  
利用发电厂烟道气(以下简称烟气,主要成分为CO_2与N_2)开采天然气水合物(以下简称水合物)是一种安全、环保的方法,但目前对于该开采方法的能耗及能效情况仍缺乏深入的研究。为此,建立了一种烟气开采水合物的流程:烟气通过增压注入到水合物储层,储层中的水合物一部分发生热分解,另一部分与烟气置换得到CH_4-CO_2-N_2混合气,再经膜组件分离除去N_2得到提浓后的CH_4-CO_2混合气,最后将CH_4-CO_2混合气输送至原发电厂发电。进而采用Aspen Plus软件对这一过程进行了模拟,分析了不同注入压力下烟气置换过程的采注比、置换采出CH_4的比例以及整个过程的能耗与能效。结果表明:(1)烟气开采水合物过程的主要能耗在增压注入阶段,注入压力的增加会导致增压阶段与膜分离阶段的能耗相应增加,但在一定程度上也可提高压力能回收率;(2)注入压力在5~16 MPa条件下,烟气置换过程的采注比为0.03~0.26,置换采出CH_4的比例为19.9%~56.2%,烟气开采水合物全过程的单位能耗为2.15~1.05(k W·h)/kgCH_4,能源投入回报值(EROI)介于7.2~14.7。结论认为:在5~10 MPa范围内增加注入压力可有效地提高烟气开采水合物过程的能效。  相似文献   

19.
人们对气体水合物的实质性研究始于对天然气管道运输中遇到的天然气水合物堵塞问题。由于在油气生产与运输及未来能源产业中的重大价值,近年来有关天然气水合物的性质及其生成和分解过程成了人们关注和研究的热点。目前,关于水合物的相平衡理论、热力学性质、生成预测方法及其结构的研究已经相当深入;而关于其分解过程的研究相对来说起步较晚。国内天然气水合物分解动力学的研究基本上还处于空白状态,国外也是在1987年才开始。但是从实际生产的角度考虑,天然气水合物分解动力学的研究是很有实际意义的。本文试图对近年来国外在天然气水合物分解动力学研究方面取得的进展做出分析和评价,并提出今后的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号