首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
采用元素分析和傅里叶变换离子回旋共振质谱(FT-ICR MS)对润滑油基础油光照产生的沉淀物进行了分析,并通过在光安定性较好的基础油中分别加入一定量的喹啉、吲哚和二苯并噻吩,考察了含氮与含硫化合物对润滑油基础油光安定性的影响。结果表明:沉淀物中硫、氮含量是光照前油品中硫、氮含量的2 000倍以上,沉淀物主要由高度缩合的含氮、含氧化合物组成;含氮化合物对润滑油基础油的光安定性的影响十分显著,尤其是非碱性含氮化合物的影响远大于碱性含氮化合物;噻吩类含硫化合物对润滑油基础油光安定性的影响较小,且噻吩类含硫化合物的含量较低时可使润滑油基础油的光安定性变差,而噻吩类含硫化合物的含量较高时可以延缓润滑油基础油的光安定性变差。  相似文献   

2.
采用全二维气相色谱-飞行时间质谱(GC×GC-TOFMS)方法对渣油接触裂化液体产物中的含硫化合物进行分子水平表征,鉴定出苯硫醚、苯硫酚、噻吩类、苯并噻吩类、二氢苯并噻吩类、二苯并噻吩类、萘噻吩类、四氢二苯并噻吩类、苯并萘噻吩类、菲噻吩类、苯并二噻吩类及噻喃类等含硫分子。通过GC×GC-TOFMS的族分离和瓦片效应重点研究了渣油接触裂化液体产物中的噻吩类、苯并噻吩类及二苯并噻吩类化合物的碳数分布,并对油品加工过程中较关注的C_2烷基取代二苯并噻吩类化合物进行了单体分子识别。结合渣油接触裂化工艺考察了接触剂活性对渣油接触裂化液体产物中的含硫化合物的分子类型分布及碳数分布的影响,结果表明,同种渣油在不同接触剂作用下接触裂化的液体产物中含硫化合物的分子类型分布基本相似,但含量分布存在明显差异。对于碳数分布,以苯并噻吩类为例,采用强微反活性的接触剂时,液体产物中的低碳数烷基(C_1~C_3)取代苯并噻吩的分布占优势,而采用弱活性接触剂时,产物中较高碳数烷基(C_4~+)取代苯并噻吩的分布占优势。  相似文献   

3.
利用酸碱萃取及柱色谱分离的方法对桦甸页岩油柴油馏分中的氮化物及氧化物进行分离富集,并利用GC-MS对其组成结构进行分析。结果表明,桦甸页岩油柴油馏分中的氮化物及氧化物种类较多,结构较复杂。其中,含氮化合物是以含一个氮原子、环数为1~3个的杂环化合物为主,包括吡啶类、苯胺类、喹啉类、吖啶类等,还有一部分直链腈类化合物。含氧化合物以酚类等酸性氧化物为主,如苯酚类、萘酚类等,还有一些茚醇类和芴醇类、脂肪酮类以及少量芳醚类化合物  相似文献   

4.
《精细石油化工》2015,(5):47-51
对抚顺页岩油柴油馏分经酸碱抽提得到的酸性组分、碱性组分及柱分离中性组分得到的极性组分进行GC-MS表征,结果表明:抚顺页岩油柴油馏分中鉴定出71种含氧化合物和77种含氮化合物。酸性组分中的含氧化合物以酚类化合物为主,其相对质量分数为52.7%;中性组分中的含氧化合物以脂肪酮和芳香酯为主。碱性组分中的氮化物主要是六元环杂氮化合物,以喹啉类化合物为主,其相对质量分数为44.1%;中性组分-3的含氮化合物主要是脂肪腈类。  相似文献   

5.
在质量范围150~1200Da、平均质量分辨率(m/Δm50%)为210000、质量精度小于1μg/g的条件下,采用大气压光致电离源(APPI)的9.4T傅里叶变换离子回旋共振质谱仪(FT-ICR MS)考察了减压蜡油(VGO)加氢精制前后及其后续FCC重循环油中含硫化合物类型分布。结果表明,VGO经加氢精制后,其中的含硫化合物的硫类型分布发生了明显的变化。在深度加氢精制VGO中,含硫化合物主要形态-16S,-18S,-20S(二苯并噻吩系列、菲基噻吩系列);VGO中加氢脱除由易到难的含硫化合物的顺序为含2个噻吩环的含硫化合物、含3个以上苯环的稠环噻吩系列、噻吩系列、苯并噻吩系列、萘苯并噻吩系列、二苯并噻吩及菲基噻吩系列;经过催化裂化之后,苯并噻吩和二苯并噻吩类硫化物主要传递到柴油馏分中;FCC重循环油中,含硫化合物主要形态为萘苯并噻吩类及更高稠环的噻吩类含硫化合物,烷基侧链碳数的集中分布范围为0~5。  相似文献   

6.
对陕北中低温煤焦油的轻油(L-tar)和重油(H-tar),采用超声萃取和索氏萃取的方法,得到GC-M S可测石油醚L-tar萃取物(P-L-tar)和H-tar萃取物(P-H-tar),采用GC-M S分析了P-L-tar和P-H-tar的组成。实验结果表明,在P-L-tar中检测到295种化合物,在P-H-tar中检测到302种化合物,主要是长链烷烃、酚类化合物和萘类化合物及少量的含氧化合物和含氮化合物;在P-L-tar中长链烷烃和酚类化合物质量分数分别为42.43%和18.28%,在P-H-tar中长链烷烃和酚类化合物的质量分数分别为21.53%和36.80%,P-H-tar中的间甲基苯酚的质量分数达6.72%。  相似文献   

7.
针对焦化芳烃中噻吩类含硫化合物影响化工利用的现状,通过分析不同焦化芳烃精制方法的特点,表明可综合利用噻吩和芳烃的吸附精制工艺具有良好的应用前景.对分子筛、π络合吸附剂、活性炭、金属氧化物等吸附剂的表面修饰、骨架引入杂原子等多种改性方法与改性后选择性、硫容等吸附性能的变化规律进行了综述,采用易吸附、脱附的π络合吸附剂和再生效果好的活性炭是提高吸附分离噻吩类含硫化合物的有效途径.  相似文献   

8.
延迟焦化装置放空塔顶产生的含硫污水油含量高、乳化严重、携带焦粉多、油水不易沉降分离,传统的高含油污水处理技术已经不能满足国家的环保要求,延迟焦化装置放空塔顶高油污水高效环保处理问题亟待解决.结合中国石化某延迟焦化装置放空塔系统的技术和运行特点,通过流程优化、设备改进,提高放空塔焦粉洗涤能力,改善油水分离效果,确保放空塔...  相似文献   

9.
对干馏所得汪清页岩油样按沸点300℃切割成轻质油馏分(<300℃)和重质油馏分(>300℃),采用气相色谱 质谱分析轻质油馏分的组成;对重质油馏分进行了FT IR、1H NMR与13C NMR的谱学分析,计算了相关结构参数。结果表明,轻质油中,脂肪烃质量分数为87017%,芳香烃不但含量少且缩合程度较低,含氮化合物以腈类为主,含氧化合物中酚类化合物占绝大部分,含硫化合物只检测到少量硫醇、噻吩类化合物。重质油中,取代基平均碳数N值为919,取代指数σ为650,说明重质油脂肪链较长,支化程度较高;芳香结构以二、三、四取代芳环为主,并有少量五取代芳环存在。  相似文献   

10.
利用实验室自制的精馏装置将4种催化裂化汽油分别切割为11个窄馏分进行了总硫、单体烃、族组成和单体硫化物气相色谱分析。从分析结果可以看出:不同来源的催化裂化汽油烃类化合物组成十分接近,主要以C4~C10的烷烃、环烷烃、芳烃和烯烃组成;含硫化合物在不同汽油中的浓度差异很大,但其化合物类型十分相似,以C0~C4烷基取代的噻吩类化合物为主,四氢噻吩类是另一类重要的含硫化合物。催化裂化汽油中存在一部分小分子硫醇,但其占硫化合物相对含量随汽油不同而存在较大差异;催化裂化汽油选择性加氢脱硫的最佳切割温度是72~80 ℃。  相似文献   

11.
Abstract

Solid-phase extraction technique with the GC/MS method was adopted to analyze the chemical composition in an asphalt aqueous solution. The results showed that the mainly organic components were phthalates, phenols, polycyclic aromatic hydrocarbons, anilines, heterocyclic nitrogen, sulfur compounds, and surfactants. The oil source and the processing technology determined the kinds and quantities of the organic components. Moreover, organic components changed with aging degree of the asphalt.  相似文献   

12.
炼油废水中有机污染物的气相色谱分析   总被引:1,自引:0,他引:1  
建立了采用液液萃取法对炼油废水进行预处理,然后用气相色谱法对处理后的含有苯系物、酚类化合物、直链烷烃、胺类化合物和多环芳烃类化合物等18种有机污染物的废水进行快速分析的方法,考察了萃取剂种类和萃取次数等条件对萃取效果的影响,同时得到了18种有机污染物的标准工作曲线。实验结果表明,最佳萃取剂为二氯甲烷;最佳萃取条件为:先在碱性条件下萃取3次,然后在酸性条件下萃取3次。该方法采用HP-5(30 m×320μm×0.25μm)毛细色谱柱,FID检测,外标法定量。各组分的检出限均在0.05~0.29 mg/L内,相对标准偏差小于10.8%;除苯酚外,其他组分的回收率为85.0%~104.9%,能满足炼油废水快速监测的需要。  相似文献   

13.
原油碱水乳化活性组分研究   总被引:5,自引:6,他引:5  
张世英  刘有邦 《油田化学》1993,10(4):342-347
对河南油田三种原油中的有机酸和非酸含氧化合物进行了分离鉴定并研究了它们在碱水乳化中的作用。有机酸是引起各原油碱水乳化的活性物质,非酸含氧化合物本身无碱水乳化活性,但对有机酸的乳化活性有协同作用。  相似文献   

14.
加氢处理润滑油基础油各组分对光安定性的影响   总被引:2,自引:1,他引:1  
将经紫外光照前后的加氢处理润滑油基础油分离为饱和烃、轻质芳烃、中质芳烃、重质芳烃和极性组分,分别采用薄层色谱、质谱和紫外吸收光谱分析了各组分的烃组成、硫和氮含量的变化,并通过将从原料油中分离出的各组分反加到光安定性好的饱和烃中,试验验证了加氢处理润滑油基础油中的重质芳烃和极性组分是光不安定组分,其中含有硫、氮的芳香杂环化合物光安定性差。  相似文献   

15.
为了建立石化行业土壤中挥发性有机物(VOCs)的分析方法,研究了国内外土壤中VOCs的分析标准,综述了土壤中VOCs的前处理技术和检测方法,并对建立石化行业土壤中VOCs分析方法提出建议。我国目前已有7项土壤中VOCs的分析标准,但涵盖的VOCs种类偏少,分析对象主要为卤代烃和芳烃。土壤中VOCs的前处理技术主要有溶剂萃取、顶空、吹扫捕集和固相微萃取等,检测方法有GC-FID,GC-MS,GC-PID。由于石化行业土壤中VOCs污染物种类不仅包括卤代烃和芳烃,还可能会有酮类、醛类、烷烃、环烷烃、烯烃等,因此需要根据不同的污染物种类建立对应的分析标准,并探索适合石化行业的土壤中VOCs前处理技术和检测方法。  相似文献   

16.
针对烃类组成复杂多样的糠醛抽出油(FEO),分别选取糠醛、二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)为溶剂,研究三级错流萃取分离FEO中不同烃组分的分离规律。采用气相色谱-质谱联用、傅里叶变换离子回旋共振质谱等手段分析了萃取抽出油、抽余油的组成信息,并计算萃取平衡分配系数、萃取选择性与抽余油收率。结果表明:DMSO萃取后抽余油中多环芳烃含量显著降低,糠醛与烃组分形成的“连续体”被破坏,促使糠醛对芳烃的萃取选择性显著增大;多种溶剂组合的三级错流萃取能有效分离FEO中的烃类组分,可将不同环数的芳烃分别富集在不同萃取级;相同的芳核结构,短侧链的芳烃更易溶解于极性溶剂中;三级萃取对杂环化合物的选择性明显高于纯碳氢芳烃化合物。  相似文献   

17.
利用盐酸-乙醇溶液对焦化蜡油(CGO)中的碱性氮化合物进行了萃取分离,采用电喷雾-傅里叶变换离子回旋共振质谱仪(ESI FT-ICR MS)对CGO及其盐酸抽提物中的碱性氮化合物进行了表征,并在小型提升管催化裂化实验装置上,考察了碱性氮化合物的催化裂化反应特性。结果表明:CGO中碱性氮化合物以N1类化合物为主,主要是带烷基或环烷基侧链的喹啉类和苯并喹啉类衍生物;在催化裂化条件下,萃取出的碱性氮化合物仍具有一定的催化裂化性能,但转化率较低,主要发生烷基侧链、环烷基侧链以及联苯桥键的断裂反应,较高含量的碱性氮化合物和多环芳烃是导致其转化率低、产物分布差的关键因素。  相似文献   

18.
研究LTAG技术中LCO加氢深度对催化裂化反应的影响,结果表明,LCO加氢深度对催化裂化反应的影响明显,适当控制LCO加氢深度,尽可能将LCO中的多环芳烃加氢转化为单环芳烃,可使催化裂化得到高收率的高辛烷值汽油。中试实验结果表明,采用NiMoW/Al_2O_3催化剂对LCO进行加氢处理,可以在多环芳烃饱和率达80%以上的同时保持较高的单环芳烃选择性。工业应用结果表明:以多环芳烃质量分数为68.7%~69.3%的LCO为原料进行加氢处理,多环芳烃饱和率达81.5%~81.8%,单环芳烃选择性达81.0%~82.3%,实现了高多环芳烃饱和率下的高单环芳烃选择性;以此加氢LCO作为催化裂化进料,催化裂化汽油的收率提高10百分点,汽油辛烷值RON提高1个单位。  相似文献   

19.
柴达木盆地西部第三系系半咸水一咸水湖盆沉积产物.西部的狮子沟盐湖从下第三系古一始新世开始,一直延续至上第三系中新世,以半咸水一咸水湖相为主.南翼山地区的盐湖则从渐新世开始到上新世消亡.主要的生油凹陷发育期是以微咸水一半咸水湖相沉积为主的中新世和上新世.有机地球化学研究表明,西部第三系生油岩有机质类型主要以混合型为主,兼有部分腐泥型和腐殖型.从二环芳烃与多环芳烃的变化关系及芳烃化合物与沉积环境和母源输入的关系来看,芳烃馏份中的蔡系、联苯系、惹烯等化合物与陆源高等植物之间存在着成因联系.而菲系、窟系以及苯并花和苯并蔡唆吩则可能与低等水生生物的关系更为密切.此外,有利于形成药系和硫药系列化合物的咸水还原环境,同样也有利于蔡系化合物的保存.   相似文献   

20.
石油炼制的化工转型及中间基原油供给比例持续增大的趋势均愈发明显。但中间基劣质渣油中硫、氮、重金属等杂原子含量高,稠环芳烃、胶质、沥青质等难裂化重组分多,对多产化工品途径带来挑战,需通过加氢等前处理工艺进行改质。基于重油分子水平组成、烃分子结构结合催化裂解反应化学研究,提出多产化工品的优势原料烃类组成结构为链烷烃、一环~四环环烷烃及烷基苯,需要渣油加氢与催化裂解两个单元很好地耦合。中间基渣油加氢改质的方向为稠环芳烃超深度加氢饱和并适度裂化。从分子水平表征中间基渣油加氢前后烃组成结构的变化显示,中国石化石油化工科学研究院以烃类结构为导向,采用加氢过程实现了多环芳烃、噻吩型含硫芳烃、胶质、沥青质的深度加氢饱和,定向转化为链烷烃和环烷烃尤其是一环~三环环烷烃等可多产化工品的优势烃类结构,进而与高选择性催化裂解技术耦合可实现劣质中间基渣油多产低碳烯烃和BTX(苯、甲苯、二甲苯)等化工品的目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号