首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
以仪长管输原油渣油(简称仪长渣油)为原料、以沙特阿拉伯轻质原油渣油(简称沙轻渣油)作为对比油,采用傅里叶变换离子回旋共振质谱仪及核磁共振波谱仪对两类渣油的烃类组成及结构参数进行表征,对比考察两种渣油的加氢处理反应性能。结果表明,与沙轻渣油相比,仪长渣油具有硫含量低、氮含量高、胶质含量高、芳香分含量低、大量分子都含有氮原子、分子较大、支化程度高等特点,在相同的催化剂体系和工艺条件下,仪长渣油的残炭降低率显著低于沙轻渣油。  相似文献   

2.
以仪长管输原油渣油(简称仪长渣油)为原料、以沙特阿拉伯轻质原油渣油(简称沙轻渣油)作为对比油,采用傅里叶变换离子回旋共振质谱仪及核磁共振波谱仪对两类渣油的烃类组成及结构参数进行表征,对比考察两种渣油的加氢处理反应性能。结果表明,与沙轻渣油相比,仪长渣油具有硫含量低、氮含量高、胶质含量高、芳香分含量低、大量分子都含有氮原子、分子较大、支化程度高等特点,在相同的催化剂体系和工艺条件下,仪长渣油的残炭降低率显著低于沙轻渣油。  相似文献   

3.
采用碳硫元素分析(CS)、催化剂氮含量分析(CAT-N)、热重 质谱联用分析(TG-MS)以及低温静态N2物理吸附等技术手段,分别对在中型固定床渣油加氢实验装置上运转0(硫化后)、162、262、562 h后的卸出加氢脱金属催化剂进行表征,以研究高氮低硫类渣油加氢过程运转初期催化剂失活快的原因。结果表明:在相同催化剂级配体系和相同工艺条件下,与加工高硫低氮类沙特阿拉伯轻质原油的渣油原料(沙轻渣油)的脱金属催化剂相比,加工高氮低硫类仪长管输原油的渣油原料(仪长渣油)的脱金属催化剂上形成了更多的积炭,沉积的硫化物略少,而氮化物较多;加工仪长渣油的脱金属催化剂上形成了更多的高温型积炭,且相比加工沙轻渣油的脱金属催化剂上形成的高温型积炭更难氧化燃烧;积炭对加工仪长渣油的脱金属催化剂的孔结构性质影响更大,比表面积、孔体积均低于加工沙轻渣油的脱金属催化剂,大孔占比更低。  相似文献   

4.
为考察固定床渣油加氢-催化裂化双向组合(RICP)技术中多环芳烃改善杂质脱除效果和抑制催化剂积炭的原因,建立了基于Flory-Huggins活度系数模型考察380 ℃、14.0 MPa条件下沥青质稳定性的方法。基于上述方法,建立了衡量渣油加氢反应中活性氢使用效率的参数A/B:A越大,活性氢用于杂质脱除的效率越高;B越小,活性氢用于沥青质加氢的效率越高。研究结果表明,经过加氢后,渣油轻质化程度增加,渣油溶氢量增加,沥青质与渣油(含溶解氢)溶解度参数之差增加,沥青质稳定性变差;在380 ℃、14.0 MPa条件下,采用RDM-32,RDM-53,RCS-31催化剂以体积比40:10:50级配时,沙轻常压渣油加氢过程的A/B值最大;在此基础上,引入高芳香性馏分有利于进一步提高加氢过程的A/B值。多环芳烃改善杂质脱除效果并抑制催化剂积炭的原因在于:多环芳烃优化了活性氢用于杂质脱除和沥青质加氢的效率。  相似文献   

5.
以中东高硫渣油为原料,从催化剂开发、工艺条件优化、催化剂级配及活性稳定性考察等角度深入研究并开发了渣油选择性加氢脱硫技术。结果表明:新开发的渣油选择性加氢脱硫催化剂(包括专用脱金属剂和专用脱硫剂)的加氢脱硫活性显著高于常规渣油加氢催化剂(包括相应的常规脱金属剂和常规脱硫剂);在加氢生成油硫含量相当的情况下,合适的氢分压、较低的体积空速、较高的氢油比以及较低的反应温度可以提高脱硫选择性;与常规渣油加氢脱硫技术相比,在脱硫率相当的情况下,新开发的渣油选择性加氢脱硫技术的反应温度低7℃,加氢生成油的残炭升高率为11.5%,加氢过程的氢耗降低率为7%~11%。  相似文献   

6.
以伊朗原油经常减压蒸馏后得到的500℃以上的减压渣油为原料,在连续装置上进行临氢热裂化(反应器中装填惰性瓷环)和沸腾床加氢(反应器装填抚顺石油化工研究院开发并工业放大的FEM-10催化剂)试验,在反应压力15 MPa,氢油体积比900∶1,反应空速1.0 h-1的条件下,考察了反应温度对渣油热裂化和沸腾床加氢性能的影响。试验结果表明:渣油原料经临氢热裂化和沸腾床加氢反应后,生成油性质有显著区别,热裂化反应生成油金属、硫及残炭含量明显高于相同条件下的加氢反应结果,高温热裂化生成油性质极不稳定,有焦炭生成;相同反应温度下的原料500℃以上组分的热裂化转化率要明显高于加氢转化率。根据生成油金属钒脱除率可以判断沸腾床反应器的催化剂流化状态,如果生成油的金属钒脱除率高于80%,则反应器中的催化剂处于良好的沸腾状态;而生成油金属钒脱除率低于50%,则反应器中的催化剂未处于良好的沸腾状态。  相似文献   

7.
以加氢轻循环油(LCO)为原料,采用含Y型分子筛、活性中孔材料以及含β或MFI结构分子筛的不同类型催化剂在小型固定流化床ACE Model Rt装置上进行裂化反应实验,考察不同类型催化剂对加氢LCO中各组分的转化能力,并考察反应条件对加氢LCO裂化反应的影响。结果表明:采用含高活性Y型分子筛的催化剂能够得到较高的汽油收率及C6~C9芳烃收率,有利于提高汽油辛烷值或者获得较多的苯、甲苯、二甲苯等化工产品,但反应过程同时会生成双环及多环芳烃,抵消了部分加氢前处理的效果;反应温度和剂油比对加氢LCO裂化转化率影响较小;汽油收率随反应温度的提高而降低,剂油比对汽油收率的影响较小;提高反应温度会促进重质产物的生成,而提高剂油比则会抑制重质产物的生成;反应温度和剂油比的提高均有利于增加汽油中芳烃含量。  相似文献   

8.
从分子水平研究了催化裂化轻循环油(LCO)经加氢处理后进行催化裂化生成苯、甲苯、二甲苯和乙苯等轻质芳烃(BTXE)的反应规律。认为加氢LCO中重质单环芳烃(包括烷基苯和环烃基苯)的含量及催化裂化反应条件是影响轻质芳烃产率的关键,适宜的加氢处理深度(加氢LCO氢质量分数为11.00%)、催化裂化较高的反应温度(大于550 ℃)和较大的剂油比(大于8)有利于生产轻质芳烃。在实验条件范围内,LCO中环烃基苯的表观裂化反应比例大于73.4%,表观缩合反应比例小于14.7%,表观未转化比例小于15.0%,且高温有利于LCO中环烃基苯的裂化反应。加氢LCO经催化裂化反应生成轻质芳烃的单程产率可达14.3%,约占催化裂化产物中单环芳烃总量的1/3。  相似文献   

9.
石油炼制的化工转型及中间基原油供给比例持续增大的趋势均愈发明显。但中间基劣质渣油中硫、氮、重金属等杂原子含量高,稠环芳烃、胶质、沥青质等难裂化重组分多,对多产化工品途径带来挑战,需通过加氢等前处理工艺进行改质。基于重油分子水平组成、烃分子结构结合催化裂解反应化学研究,提出多产化工品的优势原料烃类组成结构为链烷烃、一环~四环环烷烃及烷基苯,需要渣油加氢与催化裂解两个单元很好地耦合。中间基渣油加氢改质的方向为稠环芳烃超深度加氢饱和并适度裂化。从分子水平表征中间基渣油加氢前后烃组成结构的变化显示,中国石化石油化工科学研究院以烃类结构为导向,采用加氢过程实现了多环芳烃、噻吩型含硫芳烃、胶质、沥青质的深度加氢饱和,定向转化为链烷烃和环烷烃尤其是一环~三环环烷烃等可多产化工品的优势烃类结构,进而与高选择性催化裂解技术耦合可实现劣质中间基渣油多产低碳烯烃和BTX(苯、甲苯、二甲苯)等化工品的目标。  相似文献   

10.
针对仪长管输原油渣油(简称仪长渣油)的性质特点,开发了新型渣油加氢降残炭催化剂,并考察了加氢工艺条件对仪长渣油加氢处理反应的影响。通过选用镍钼型活性金属体系,改进载体的制备方法、浸渍工艺过程及添加助剂等开发了新型渣油加氢降残炭催化剂,使用该催化剂的级配体系具有更强的加氢饱和活性及杂原子脱除活性。在相同的操作条件下,与现工业装置应用的催化剂级配体系相比,使用新型加氢降残炭催化剂的级配体系可以使仪长渣油的残炭降低率提高3.3百分点、加氢脱氮率提高7.9百分点,有效提升仪长渣油的加氢生成油品质。在渣油加氢常规操作范围内,通过提高反应温度和氢分压、降低体积空速可以提高仪长渣油残炭降低率,促进加氢脱硫、加氢脱氮等反应的进行,有利于加氢生成油品质的提高。  相似文献   

11.
宋涛  王仁辉 《石油沥青》1998,12(4):37-42
溶剂沥青是一种有效的渣同深加工工艺。本文对沙轻减渣与催化裂化油浆的混合物的脱油沥青调和重交沥青的可行性进行了研究。结果表明:沙轻减渣与催化裂化油浆混合物溶剂沥青得到的脱油沥青与减渣可以调和出各种牌号的高等级道路沥青。  相似文献   

12.
近年来国内原油进口依存度一直处于高位,原油资源需要高效利用。重质馏分油特别是渣油的高效转化至关重要,浆态床渣油加氢技术由于其能加工劣质原料且转化率高,是将重油转化为高价值运输燃料和石化产品的较好选择。重点介绍了国内外典型浆态床渣油加氢技术,包括委内瑞拉国家石油公司的HDH-Plus技术、美国环球石油公司的Uniflex技术、美国雪佛龙鲁姆斯公司的LC-Slurry技术和VRSH技术、意大利埃尼公司的EST技术、中石化石油化工科学研究院有限公司的RMAC技术,比较了上述技术的特点,分析其技术难点,建议加强浆态床渣油加氢工艺、工程和催化剂等方面的研究。  相似文献   

13.
进口原油减压渣油生产优质建筑沥青试验   总被引:1,自引:1,他引:0  
用沙中、科威特,阿曼及阿曼与胜利混合原油的减压渣油,进行了用各种氧化工艺条件生产优质建筑沥青的试验,试验结果表明,沙中、科威特减压渣油通过氧化可生产出符合GB/G494-1998标准的10号建筑沥青,用阿曼和75%阿曼与胜利混合原油的减压渣油可生产出10号、30号,40号优质建筑沥青。  相似文献   

14.
ABSTRACT

Iraqi reduced crude (350°C+) with a sulfur content of 4.3 wt% and a total metal content (Ni+V) of 141 WPPM was n-heptane deasphalted at specified conditions. The deasphalted oil (97.2 wt% of original residue) contains 4.1 wt% of sulfur and 103 ppm of metal. The original reduced crude and deasphalted oil were hydrotreated on a commercial Ni-Mo-alumina catalyst presulfided at specified conditions in a laboratory trickle-bed reactor. The reaction temperatures varied from 300 to 420°C with the liquid hourly space velocity (LHSV) ranging from 0.37 to 2.6 h?1. Hydrogen pressure was kept constant throughout the experiments at 6.1 MPa, with a hydrogen/oil ratio of about 300 NLL?1 (normal liters of hydrogen per liter of feedstock). Analysis for sulfur, nickel, vanadium and n-pentane asphaltenes were carried out for hydrotreated products from both the original residue and the deasphalted oil. The comparison of the results obtained for the hydrotreatment of deasphalted oil and original reduced crude indicates that the removal of sulfur, nickel and vanadium was higher for the deasphalted oil than those obtained for the non-deasphalted residue over the entire range of conversion. The exclusion of extremely high molecular weight asphaltenes by n-heptane deasphalting seems to improve the access of oil into catalyst pores resulting in higher desulfurization and conversion of the lower molecular weight asphaltenes. The sulfur content of n-pentane precipitated asphaltenes remained unchaneed with LHSV for various temperature for hydrotreated products produced from both deasphalted oil and original reduced crude.  相似文献   

15.
Iraqi reduced crude (350°C+) with a sulfur content of 4.3 wt% and a total metal content (Ni+V) of 141 WPPM was n-heptane deasphalted at specified conditions. The deasphalted oil (97.2 wt% of original residue) contains 4.1 wt% of sulfur and 103 ppm of metal. The original reduced crude and deasphalted oil were hydrotreated on a commercial Ni-Mo-alumina catalyst presulfided at specified conditions in a laboratory trickle-bed reactor. The reaction temperatures varied from 300 to 420°C with the liquid hourly space velocity (LHSV) ranging from 0.37 to 2.6 h-1. Hydrogen pressure was kept constant throughout the experiments at 6.1 MPa, with a hydrogen/oil ratio of about 300 NLL-1 (normal liters of hydrogen per liter of feedstock). Analysis for sulfur, nickel, vanadium and n-pentane asphaltenes were carried out for hydrotreated products from both the original residue and the deasphalted oil. The comparison of the results obtained for the hydrotreatment of deasphalted oil and original reduced crude indicates that the removal of sulfur, nickel and vanadium was higher for the deasphalted oil than those obtained for the non-deasphalted residue over the entire range of conversion. The exclusion of extremely high molecular weight asphaltenes by n-heptane deasphalting seems to improve the access of oil into catalyst pores resulting in higher desulfurization and conversion of the lower molecular weight asphaltenes. The sulfur content of n-pentane precipitated asphaltenes remained unchaneed with LHSV for various temperature for hydrotreated products produced from both deasphalted oil and original reduced crude.  相似文献   

16.
针对劣质渣油加工,分别采用沸腾床渣油加氢-焦化组合工艺与单独焦化工艺两种技术路线进行探讨,以选择其适合的加工技术路线。结果表明,劣质渣油原料经沸腾床加氢,产品杂质含量显著降低。在双反应器温度基准+5/ 基准+5、基准空速条件下,劣质渣油加氢产品的S、Ni、V含量分别下降了90%、95%、99%。与劣质渣油原料相比,沸腾床加氢减压渣油的性质得到极大改善。与单独焦化工艺相比,采用组合工艺加工劣质渣油,总液体产率提高了13.57%,增产高附加值产品的能力明显提升,从而大幅度提高经济效益。同时,该组合工艺具有改善油品稳定性、原料适应性广、工艺灵活等明显优势, 是提高原油资源利用率的较佳方案。  相似文献   

17.
利用气相色谱和高分辨质谱等手段分析了格尔木炼油厂的青海原油、常压渣油及渣油加氢产物的分子组成,发现青海原油中的硫、氮化合物具有特殊的分子组成,解释了该原油生产的催化裂化汽油中硫含量异常偏高及其常压渣油加氢脱氮率低的化学机理:含硫化合物富含噻吩结构单元,催化裂化过程中小分子噻吩在汽油中实现富集;氮化物烷基侧链较长,形成较强的空间屏蔽,抑制了加氢过程中氮的脱除。常压渣油加氢实验结果表明:高温裂化反应有利于提高常压渣油中氮元素的脱除率;常压渣油加氢过程中具有高缩合度的小分子含氮化合物被优先脱除,缩合度高的大分子氮化物发生芳环加氢反应形成部分饱和的中性氮化物,但芳环加氢反应仅发生在与中性氮化物氮原子未直接共轭的芳环上。  相似文献   

18.
高速公路用石油沥青的研制与开发   总被引:2,自引:1,他引:1  
以进口沙中原油、科威特原油、阿曼原油及国内渤海油田绥中36-1原油为原料,利用减压深拔、半氧化、溶剂抽提及调合等传统工艺,研制开发了达到进口沥青指标要求的高速公路用石油肝新产品。其路用性能达到进口优质沥青的水平。  相似文献   

19.
渣油悬浮床加氢裂化与固定床加氢脱硫工艺的比较   总被引:3,自引:0,他引:3  
比较了渣油固定床加氢脱硫工艺和渣油悬浮床加氢裂化工艺的流程设计特点、建设投资、原料性质、反应条件及产品分布和性质。渣油固定床加氢脱硫 催化裂化组合工艺 ,可以将渣油彻底转化 ,有效合理地解决了含硫渣油的出路问题 ,而且国内有成熟的技术和催化剂 ,但柴油质量差 ,汽油达不到环保的要求 ,而且建设投资较大 ,催化剂费用较高。渣油悬浮床加氢裂化 在线加氢精制组合工艺 ,可以生产出作为催化重整原料的石脑油、高十六烷值的优质柴油和作为催化裂化原料的加氢蜡油 ,残渣仅有 5 %左右 ,而且建设投资较小 ,催化剂费用较低 ,但国内尚无此工艺的应用经验。在加工渣油时选用固定床加氢脱硫工艺还是悬浮床加氢裂化工艺 ,应根据所用原料的性质和加工的目的而定。  相似文献   

20.
对混合渣油原料油(FEED)及其经固定床加氢处理后的生成油的镍分布进行了研究,考察了不同反应温度和不同加氢处理催化剂对油样中镍分布的影响。结果表明:原料油经固定床加氢处理后,镍含量明显降低,镍主要在保护剂段和脱金属段被脱除,而加氢脱硫和加氢脱氮过程对镍的脱除效果相对较弱。在各催化剂加氢过程中,三组分中镍含量随温度变化情况不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号