共查询到15条相似文献,搜索用时 93 毫秒
1.
土壤水分是水文循环、生态环境、气候变化等研究中的关键参数,获取高分辨率长时间序列的土壤水分信息对农业管理、作物生长监测等具有重要的意义,同时也是研究的难点。基于时间序列(2019年至2020年)的Sentinel-1雷达数据和Sentinel-2光学数据,构建了地表土壤水分的雷达与光学数据协同反演模型,即裸土条件下地表土壤水分的变化检测方法,并利用归一化植被指数对植被影响进行校正,实现了青藏高原多年冻土区(五道梁)100 m空间分辨率的土壤水分反演。与地面实际观测的土壤水分进行对比验证,结果表明土壤水分反演结果与地面实测数据的相关系数介于0.672与0.941之间,无偏均方根误差介于0.031 m3/m3与0.073 m3/m3之间,土壤水分变化与区域降水事件和特征密切相关,验证了本文提出的考虑植被物候的变化检测方法在地势平坦、植被稀疏的青藏高原地区具有极高的适用性。 相似文献
2.
土壤水分是地—气能量交换和全球水循环的重要参数之一,也是水文、气象、农业等研究中的关键参数。高空间分辨率的土壤水分在探讨区域水文过程、生态环境保护及农业水资源管理等方面具有重要意义。基于Sentinel-1雷达数据发展了青藏高原地区高空间分辨率土壤水分反演算法,并获取了区域尺度空间分辨率为20 m的土壤水分。该算法首先基于地面数据、Sentinel-1雷达数据和MODIS归一化植被指数对水云模型进行了参数优化,其次利用优化后的水云模型构建了模拟数据库,利用人工神经网络算法对模拟数据进行训练,构建了基于神经网络的土壤水分反演算法。为了检验该算法,利用Sentinel-1雷达数据反演了青藏高原站点区域土壤水分值,并使用站点实测土壤水分数据对其进行了验证。结果表明:土壤水分反演值与站点实测值有良好的一致性,其相关系数为0.784—0.82,均方根误差为0.052 m3/m3—0.064 m3/m3。土壤水分反演值在时间序列上能够捕捉到土壤水分实测值的变化趋势。该研究可为青藏高原地区高空间分辨率的土壤水分监... 相似文献
3.
基于Sentinel-1合成孔径雷达 (SAR) 数据及相同时段的中分辨率成像光谱仪(MODIS)和Landsat 8两种归一化植被指数(NDVI),构建变化检测模型以估算黑河中游的高分辨率土壤水分,并探讨模型中具体参数设置对估算精度的影响。结果表明:①在对后向散射系数时间序列的差值 ( ) 和植被指数 ( ) 进行线性建模过程中,MODIS NDVI和Landsat 8 NDVI这两种植被产品所构建的模型在 空间中所选取的采样点比例分别为2%和4%时,各自取得最优精度; ②以土壤水分反演为目标,使用Landsat 8 NDVI构建的变化检测模型略优于使用MODIS NDVI构建的变化检测模型,两种模型的均方根误差RMSE分别为0.040 m3/m3和0.044 m3/m3,相关系数R分别为0.86和0.83; ③对于变化检测方法的关键参数,若使用低分辨率的SMAP/Sentinel-1 L2_SM_SP土壤水分数据分别代替站点观测的土壤水分初始值和缩放因子 (即两个连续时相土壤水分变化的最大值 ) 这两个参数,则土壤水分RMSE将分别增加0.01 m3/m3和0.04 m3/m3。即土壤水分缩放因子这一参数的误差对反演结果的影响大于土壤水分初始值误差对反演结果的影响,故采用高精度的缩放因子进行变化检测估算。研究结论对于利用新兴的Sentinel-1 SAR数据,通过变化检测算法准确获取高分辨率土壤水分信息具有实际参考价值。 相似文献
4.
基于Sentinel-1及 Landsat 8数据的黑河中游农田土壤水分估算 总被引:1,自引:0,他引:1
土壤水分是陆地表层系统中的关键变量。利用主动微波遥感,特别是合成孔径雷达(Synthetic Aperture Radar,SAR)的观测,在监测和估计表层土壤水分时空分布方面已开展了诸多研究。然而,SAR土壤水分反演仍存在诸多挑战,特别是地表粗糙度和植被的影响。因此,本文提出了一种结合主动微波和光学遥感的优化估计方案,旨在同步反演植被含水量、地表粗糙度和土壤水分。反演算法首先在水云模型的框架下对模型中的植被透过率因子(与植被含水量密切相关)采用3种不同的光学遥感指数——修正的土壤调节植被指数(Modified Soil Adjusted Vegetation Index,MSAVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和归一化水体指数(Normalized Difference Water Index,NDWI)进行参数化估计,用于校正植被层的散射贡献。在此基础上,构造基于SAR观测和Oh模型的代价函数,利用复型洗牌全局优化算法进行土壤水分和地表粗糙度的联合反演。采用Sentinel-1 SAR和Landsat 8多光谱数据在黑河中游开展了反演试验,并利用相应的地面观测数据对结果进行了验证。结果表明反演结果与地面观测具有良好的一致性,其中基于NDWI的植被含水量反演效果最佳,与地面观测比较,土壤水分决定系数(R 2)在0.7以上,均方根误差(RMSE)为0.073 m^ 3/m^ 3;植被含水量R 2大于0.9,RMSE为0.885 kg/m 2,表明该方法能够较准确地估计土壤水分。同时发现植被含水量的估计结果,以及植被透过率的参数化方案对土壤水分的反演精度有一定的影响,在未来的研究中需要进一步探索。 相似文献
5.
基于MODIS数据的渭河流域土壤水分反演 总被引:2,自引:0,他引:2
利用MODIS产品数据MOD11A1、MOD13A2和MOD15A2获取地表温度(TS)、昼夜温差(TSD)、表观热惯量(ATI)、归一化植被指数(NDVI)、增强植被指数(EVI)、叶面积指数(LAI),构建渭河流域2006年8月1日、8月6日的TS-NDVI、TS-EVI、TS-LAI、TSD-NDVI、TSD-EVI、TSD-LAI、ATI-NDVI、ATI-EVI、ATI-LAI特征空间,根据TS-NDVI、TS-EVI、TS-LAI、TSD-NDVI、TSD-EVI、TSD-LAI、AI-NDVI、ATI-EVI、ATI-LAI特征空间建立了温度归一化植被指数型干旱指数(TNDI)、温度增强植被指数型干旱指数(TEDI)、温度叶面积指数型干旱指数(TLDI)、温差归一化植被指数型干旱指数(DTNDI)、温差增强植被指数型干旱指数(DTEDI)、温差叶面积指数型干旱指数(DTLDI)、表观热惯量归一化植被指数型干旱指数(ANDI)、表观热惯量增强植被指数型干旱指数(AEDI)、表观热惯量叶面积指数型干旱指数(ALDI),并以这些干旱指数作为土壤水分监测指标,反演了渭河流域2006年8月1日、8月6日的土壤水分.利用TDR实测10cm土壤水分进行相关分析表明: TEDI、TNDI、TLDI在高植被覆盖的地区、低植被覆盖的地区进行土壤水分反演和干旱监测都能取得较好的效果,其中TEDI效果最好;DTNDI、DTEDI、DTLDI、ANDI、AEDI、ALDI比较适合在低植被覆盖的地区进行土壤水分反演和干旱监测,但在高植被覆盖的地区效果较差,不适合进行土壤水分反演和干旱监测. 相似文献
6.
7.
8.
以黄土高原半干旱区定西为试验区,利用Radarsat-2/SAR和MODIS数据,将由MODIS NDVI估算的植被含水量(VWC)应用到微波散射Water-Cloud模型中校正植被的影响。采用交叉极化(VV/VH)组合方案对植被覆盖下土壤水分的反演进行初步探讨,结果表明:在植被影响校正前,模型反演土壤水分值出现明显低估现象;校正植被影响后,相关系数R由0.13提高到0.44,且通过α=0.01的显著性检验,标准差SD由5.02降低到4.30,有效提高了模型反演土壤水分的准确度。卫星反演的研究区土壤含水量大部分介于10%~30%之间,与实地考察情况一致,较好地反映出区域土壤湿度分布信息。表明,光学和微波协同遥感反演对于提高农田土壤水分遥感反演精度具有较大的应用潜力。 相似文献
9.
基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分 总被引:2,自引:0,他引:2
基于新一代的Sentinel-1SAR数据与FY-3C的MWRI数据,研究植被覆盖地表土壤湿度反演方法。为消除植被对土壤湿度反演影响,首先利用FY-3C/MWRI的微波极化差异指数MPDI,建立植被含水量反演模型;然后,结合植被含水量反演模型和水—云模型,发展一种主被动微波联合反演植被覆盖地表土壤含水量模型;最后,在江淮地区开展反演试验,利用观测的土壤湿度数据进行反演结果的精度验证。结果表明:(1)对于植被覆盖地表土壤湿度反演,由FY3C/MWRI提取的MPDI对于去除植被影响效果较好;(2)相比于VH极化哨兵1号卫星数据,VV极化数据更适用于土壤含水量的反演,能够得到更高的土壤湿度反演精度;(3)哨兵1号卫星数据能够获得较高精度的土壤含水量反演结果,试验反演的土壤湿度值与实测值相关系数为0.561 2,均方根误差为0.044cm~3/cm~3。 相似文献
10.
宇宙射线中子法是一种百米尺度的土壤水分无损测量方法。基于重庆市青木关槽谷区多个站点的多层土壤水分观测数据,针对宇宙射线土壤水分观测系统(COSMOS)同步测得的中子序列开展了土壤含水量反演研究。在反演算法研究过程中,引入S-G滤波对COSMOS快中子数进行平滑,分析了植被含水量的影响,探索和优化了算法率定和验证阶段不同的数据筛选方案。结果表明:该区域植被含水量对COSMOS反演结果影响较小,且考虑全时段土壤水分水平下发展的算法能得到与实测区域平均更为一致的土壤水分序列。最后应用该反演算法进一步生成了COSMOS观测时段的长时间序列土壤水分产品,并与周边相邻土壤水分观测进行间接验证,揭示了该区域的土壤水分季节变化特征。该研究发展的COSMOS土壤水分反演算法在该区域展现了较强的适用性,可为重庆市青木关喀斯特槽谷区典型流域的区域尺度土壤水分观测与水文气象分析提供支持。 相似文献
11.
This study aims to develop soil moisture retrieval model over vegetated areas based on Sentinel-1 SAR and FY-3C data.In order to remove vegetation effect,the MWRI data from FY-3C was applied to establish the inversion model of vegetation water content.The model was combined with the original water-cloud model,and developing a soil moisture retrieval model by combining active and passive microwave remote sensing data.Finally,the experiment of the soil moisture retrieval was conducted in Jiangsu and Anhui province,and validating the inversion accuracy of soil moisture by measured data.The results showed that:①For the vegetation-covered surface,the Microwave Polarization Difference Index obtain from FY-3C/MWRI was suitable for removing vegetation effect.②Compared with the Sentinel-1 VH polarization data,the backscattering coefficient of VV polarization was more suitable for soil moisture retrieval and get a higher accuracy of soil moisture retrieval.③Sentinel\|1 data can obtain high precision soil moisture estimation results,and the correlation coefficient between the estimated and measured soil moisture is 0.561 2 and RMSE is 0.044 cm3/cm3. 相似文献
12.
In this study, a change detection model, constructed using the Sentinel-1 Synthetic Aperture Radar (SAR) data and the simultaneous Normalized Difference Vegetation Index (NDVI) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 sensors, is applied to estimate soil moisture in middle reaches of the Heihe River Basin, and the effects of two key parameters on retrieval accuracy are comprehensively investigated. The results show that: (1) when constructing the empirical relationship between backscattering coefficient difference ( ) and Vegetation Index (VI) required by change detection model, the optimal sampling ratios in the space are approximately 2% and 4% for MODIS NDVI and Landsat 8 NDVI, respectively; (2) the Landsat 8 NDVI-based change detection model slightly outperforms the MODIS NDVI-based model in soil moisture retrieval accuracy, with Root Mean Square Error(RMSE) of 0.040 m3/m3 and 0.044 m3/m3respectively; (3) for the key parameters of the change detection method, replacing the ground-based initial soil moisture and scaling factor (maximum soil moisture difference between two adjacent dates ) by the low-resolution SMAP/Sentinel-1 L2_SM_SP data will increase the RMSE by 0.01 m3/m3 and 0.04 m3/m3 respectively. Comparing to the parameter of initial soil moisture, the error in soil moisture scaling factor will lead to more significant degradation in the performance of the change detection method, thus it is recommended to use the high precision scaling factor for soil moisture estimation. This study confirms the promising potential of Sentinel-1 data for retrieving high-resolution soil moisture via change detection method and provides practical insight into its application. 相似文献
13.
从第三十五届国际宇航联合会的空同遥感专业小组会议上可以看出,目前空间遥感的现状及未来发展前景。今后空间遥感将从具有单一遥感能力向具有综合遥感能力方面发展,不仅能对陆地,而且对海 相似文献
14.
基于TVDI的大范围干旱区土壤水分遥感反演模型研究 总被引:7,自引:0,他引:7
温度植被干旱指数TVDI(Temperature Vegetation Dryness Index)是一种基于光学与热红外遥感通道数据进行植被覆盖区域表层土壤水分反演的方法。当研究区域较大、地表覆盖格局差异显著时,利用TVDI模型来反演陆表土壤水分,精度通常较低。对Sandholt的TVDI土壤水分反演模型进行了改进:利用云掩膜校正和多天平均温度合成来减少云的影响;同时对研究区域地形起伏、覆盖类型差异的影响进行了消除;对TVDI模型干边的模拟方法进行了改进。最后,使用铝盒采样等方法利用新疆地区观测得到的地面数据来拟合改进后的模型参数,并对2009年5月和8月的土壤水分进行了反演实验。与实测数据的比较分析表明,该模型能基本满足大区域土壤水分反演的要求,改进后的模型对新疆地区的土壤水分估算精度有较显著的提高。 相似文献
15.
为提高土壤水分数据同化结果的精度,将基于双集合卡尔曼滤波(Dual Ensemble Kalman Filter,DEnKF)的状态-参数估计方案与简单生物圈模型(simple biosphere model 2,SiB2)相结合,同时更新土壤水分和优化模型参数(土壤属性参数)。选用2008年6月1日~10月29日黑河上游阿柔冻融观测站为参考站,开展了同化表层土壤水分观测数据的实验。研究结果表明:DEnKF可同时优化土壤属性参数和改进土壤水分估计,该方法对表层土壤水分估计的精度0.04高于EnKF算法的精度0.05。当观测数据稀少时,DEnKF算法仍然可以得到较高精度的土壤水分估计,3层土壤水分的估计精度在0.02~0.05之间。 相似文献