首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
煤层气非平衡吸附的数学模型和数值模拟   总被引:10,自引:0,他引:10  
李斌 《石油学报》1996,17(4):42-49
煤层为微孔-裂缝双重介质,煤层气通过吸附作用吸附在煤孔隙壁面上而储集.文中建立了描述裂缝中气水两相渗流及微孔中非平衡吸附气体解吸扩散过程的数学模型,扩散到裂缝中的气体被视为源项,微孔中气体解吸扩散方程与裂缝中气相渗流方程通过微孔单元表面气压等于周围裂缝网气压的条件而耦合;考虑了单井径向流模型、垂直压裂模型及拟三维多井模型,并给出了相应的有限差分数值模型.  相似文献   

2.
ú����������Ԥ���о�   总被引:7,自引:6,他引:7  
文章采用数值模拟方法,从煤层甲烷的流动机理入手,利用朗格缪尔等温吸附方程描述甲烷从煤表面解吸过程,利用Fick定律描述甲烷从煤基质和微孔隙中的扩散,综合考虑了煤层甲烷的解吸附、扩散、渗流三个过程,并考虑了水力压裂产生高渗透裂缝对渗流场的影响,在煤层理想化等七个假设条件下,建立了煤层甲烷的非平衡拟稳态吸附扩散模型,利用该模型编制了煤层气井产能预测软件,并进行了模拟计算,给出了计算实例。结果表明:煤层在没有经过水力压裂处理时,煤层的气、水产量是很小的;经过水力压裂处理后,由于煤层的排水降压效果,煤层气井气、水产量有明显的增加,具有经济开采的产量规模。  相似文献   

3.
煤层气藏通常采用压裂直井开发,由于其吸附、解吸和扩散特征,运用常规二项式产能方程分析煤层气藏稳态产能会产生较大误差。根据煤层气藏天然裂缝发育的地质特征,运用平行板理论、等值渗流阻力原理,首次建立了针对煤层气藏,考虑其吸附、解吸、扩散特征的连续等效介质模型。该模型将裂缝性双重孔隙介质的煤层气藏转化为运用等效渗透率表征的常规均质气藏,但对各相关参数赋予特殊值时,可简化得到各类常规气藏模型。通过计算分析煤层气藏压裂直井的IPR曲线,可以看出当考虑解吸扩散时,其IPR曲线异于常规气藏。兰格缪尔压力越小,曲线下凹越严重,绝对无阻流量越大;兰格缪尔体积越小,扩散系数越小,曲线下凹越严重,绝对无阻流量越小。通过实际对比分析,该模型误差小于10%,具有较好的适应性。  相似文献   

4.
页岩气已成为非常规能源开发的焦点,然而目前对于页岩气井产能模型的研究较少考虑气体吸附(或解吸)、扩散效应及压裂改造前后储层物性差异的影响。为研究页岩气藏多段压裂水平井的产能递减规律,根据页岩气的线性渗流特性,利用综合考虑气体非稳态窜流、扩散及吸附(或解吸)影响时的压力控制方程建立了矩形封闭地层多段压裂水平井渗流模型,运用Laplace变换求得了模型的解析解并利用Stehfest数值反演算法计算绘制了实空间内的产能递减曲线。根据产能典型曲线划分了流动阶段并进行了产能递减规律分析。研究表明:裂缝导流能力、裂缝系统储容比、窜流系数、压裂改造区宽度、吸附相关参数及扩散相关参数对气井产能存在不同程度影响;压裂改造区对气井产能的贡献较未改造时更大。提出了适用于气井的产量预测方法,实例计算结果证明该模型可用于多段压裂水平井的产能预测分析。  相似文献   

5.
90%以上的煤层气以吸附状态附着在煤的内表面上,煤层气的产出是一个区别于常规天然气的"排水—降压—解吸—扩散—渗流"的复杂过程。我国煤层气储层条件较差,具有低孔、低渗、非均质性强的特点,普遍存在常规开采方式开发效果差的问题。为提高煤层气单井产量,实现商业化开采,必须对储层进行增产改造,促进排水降压,提高煤层气单井产量,水力压裂改造技术是当前煤层气增产的首选方法,也是已被证明的煤层气开采的一种有效的增产方法。论述了水力压裂增产渗流机理及其效果评价方法,并进行了实例分析。表明通过对煤层进行水力压裂,能够改善井底渗流条件,提高储层的渗透能力;煤层渗透率、表皮系数及裂缝导流能力和裂缝半长是评价煤层气水力压裂增产效果的主要参数。  相似文献   

6.
王琰琛  陈军  邓亚  肖聪 《天然气地球科学》2018,28(12):1795-1802
实现页岩气藏有效开发的关键在于页岩储层渗流机理的研究和产能模型的建立,但页岩气藏孔渗结构具有强烈的多尺度性,渗流机理复杂;纳米级孔隙存在克努森扩散,解吸介质变形等情形。同时,在增产改造过程中形成的复杂裂缝网络形态也对页岩气多尺度流动特征及页岩气产能造成不同程度的影响。建立了页岩气藏体积压裂后,水力裂缝与天然裂缝耦合条件下的产能预测模型,综合考虑吸附、解吸、扩散、裂缝网络等非线性流动效应的作用,并分别运用有限差分、嵌套性有限差分方法及牛顿拉普森迭代法进行求解。最后,结合我国某页岩区块实际井对体积压裂后产能进行影响因素分析。该模型对页岩气藏水平井压裂设计、压裂参数优化以及产能评价研究都具有一定的指导意义。  相似文献   

7.
因煤层复杂渗流机理及低孔低渗特征,煤层气均需采取压裂改造措施进行开采。为了正确认识压裂参数对煤层气井产能、采出程度及井网部署的影响规律,从储层应力形变及煤层气解吸、扩散、渗流流固耦合分析出发,建立压裂井气水两相非线性渗流模型,研究裂缝参数、储层非均质性对井距及井网类型优化的影响,并且采用注入压降试井解释对压裂工艺参数进行评价。研究结果表明:煤层流体以非线性渗流为主,物性呈现先下降后上升的特征,存在启动压力梯度的影响;井距优化应考虑裂缝方向、裂缝穿透比、裂缝导流能力等因素的影响;矩形与菱形井网选择要参考储层各向异性系数的临界值;避免注入压降测试中井筒液面的变化及测试段的选择对试井解释结果的影响,提高压裂效果解释评价准确性。研究对煤层气压裂井裂缝、井网参数优化及提高压裂效果评价准确性具有较好的指导意义。  相似文献   

8.
页岩基质渗透率极低,天然裂缝发育,是一种典型的双重介质。气体在页岩纳米级孔隙中同时存在吸附解吸、扩散和渗流等多种流动机理,同时,天然裂缝渗透率会随地层压力的降低而降低。以平板双重介质模型为基础,综合气体在页岩纳米级基质孔隙中的吸附解吸、扩散和渗流机理,考虑天然裂缝的应力敏感效应,建立了一个页岩气体积压裂水平井非稳态产能评价模型,采用摄动法和Laplace变换,求取了模型的解析解,绘制了典型生产曲线。结果表明,吸附解吸和扩散作用分别影响早期产能和中后期产能,而天然裂缝的应力敏感性影响所有流动阶段的产能。  相似文献   

9.
综述了各国页岩气的勘探开发现状,探讨了页岩油气勘探开发过程中的关键技术,主要有以下几方面的认识:①综合多参数、多信息,建立不同相带的评价标准及有利区带预测方法是页岩气勘探开发的前提。②页岩气的渗流模型呈现多尺度的特点,开采过程涉及到解吸、扩散和渗流3个阶段,建立渗流方程时需考虑解吸吸附模型、扩散模型、压裂裂缝模型等影响因素。③多分支井、丛式井、羽状井等水平钻井技术,体积压裂技术等新技术是提高页岩气产能及收益的关键。④井中地震技术能实时提供施工过程中所产生的裂缝的方位、密度、尺寸、间距等参数,描述裂缝复杂程度,评价增产实施方案的有效性。  相似文献   

10.
考虑页岩储层微观渗流的压裂产能数值模拟   总被引:3,自引:0,他引:3  
考虑页岩微观渗流特征下的产能评价方法有利于提高压后动态分析的准确性和可靠性。压裂改造后页岩储层中,页岩气将在纳米孔隙中通过解吸附、扩散和滑脱流进入天然裂缝,再由天然裂缝流向人工裂缝,常规的产能评价数学模型已无法进行刻画和描述。为此,在考虑页岩气生产过程中基岩纳米孔隙中Knudsen扩散、滑脱流、吸附解吸微观流动特征,天然裂缝应力敏感以及人工裂缝非达西流效应基础上,基于双重介质模型,人工裂缝考虑为离散裂缝,建立了页岩储层基质—天然裂缝—人工裂缝的渗流数学模型,并给出了数值解法。模拟分析了页岩水平井压裂裂缝与储层参数对生产动态的影响。研究表明:吸附解吸效应、Knudsen扩散与滑脱流、天然裂缝渗透率、应力敏感系数、裂缝导流能力、裂缝半长与压裂段数对页岩气井生产具有重要影响。该研究为完善页岩气渗流理论,建立适合页岩气的动态评价模型,准确评价页岩气产能具有重要意义。  相似文献   

11.
12.
压裂火山岩气井不对称裂缝产能模型研究   总被引:6,自引:0,他引:6  
随着松辽盆地徐深气田火山岩气藏投入开发,急需开展压裂火山岩气井产能的研究,从而指导气田开发。基于气体单相稳定渗流规律,针对压裂后不对称裂缝特征,引入保角变换和等值渗流阻力原理,建立了压裂火山岩气井不对称裂缝产能模型,同时分析了火山岩气井压裂裂缝的不对称性对产能的影响。结果表明:火山岩气井单条裂缝产能与不对称性没有关系,随着裂缝长度的增加,产能增加幅度相同;对于压裂双裂缝气井来说,随裂缝长轴长度增加产能增加的幅度最大,随裂缝短轴长度增加产能增加的幅度最小;对称裂缝产能模型是不对称裂缝产能模型的特例,不对称裂缝产能模型具有更广泛的适用性。  相似文献   

13.
低渗透煤层气产能影响因素评价   总被引:3,自引:1,他引:2  
采用数值模拟方法,从煤层气的流动机理入手,利用 Langmuir 等温吸附方程描述煤层气从煤表面的解吸过程,用Fick定律描述煤层气在煤基质和微孔隙中的扩散,综合考虑了煤层气的解吸、扩散和渗流3个过程,建立了煤层气储层数学模型,推导数值模型并进行了模拟计算。计算结果表明:裂缝半长越长产能越高,当裂缝半长增加100m后,裂缝半长对产能的影响较小;裂缝的导流能力越大产能越高,当裂缝导流能力超过20μm2·cm后,产能增加不明显;分子扩散系数对产能影响较小,而割理的渗透率对产能影响较大;对于不同的煤层气井在投产时,应合理优选压裂缝半长和导流能力。  相似文献   

14.
页岩气藏体积压裂水平井产能有限元数值模拟   总被引:2,自引:0,他引:2  
考虑到压裂过程中的多重复合作用,将压后页岩储层分为支撑主裂缝、缝网波及区与未压裂区。考虑基岩纳米孔隙中气体吸附与解吸、Knudsen扩散、滑脱流、黏性流,以及水压诱导裂缝应力敏感效应,建立了页岩气藏体积压裂生产动态模拟的物理模型和渗流数学模型。结合Galerkin有限元方法,对基质和裂缝渗流方程进行空间上的离散,推导了三角形单元有限元数值模型,给出了压裂水平井二维渗流场内、外边界条件和水力裂缝处理方法,对时间域采用向后差分,最后顺序求解裂缝和基质压力方程,模拟了页岩气藏体积压裂水平井生产动态和压力场分布。该研究为页岩气储层体积压裂产能评价提供了理论模型,对于有限元法模拟双重介质渗流场和产能预测具有现实意义。  相似文献   

15.
页岩气藏三孔双渗模型的渗流机理   总被引:3,自引:0,他引:3  
为了掌握页岩气储层气体复杂流动的规律,从而高效开发页岩气藏,对页岩气渗流机理进行了研究。借鉴适用于非常规煤层气藏双重孔隙介质模型和考虑溶洞情况的三重孔隙介质模型,基于页岩气储层特征和成藏机理,提出了页岩气藏三孔双渗介质模型;研究了页岩气解析扩散渗流规律,提出考虑储层流体重力和毛细管力影响的渗流微分方程;并利用数值模拟软件对页岩气产能进行了预测。结果表明:基质渗透率和裂缝导流能力是页岩气开采的主控因素,只有对储层进行大规模压裂改造,形成连通性较强的裂缝网络后才能获得理想的页岩气产量和采收率。  相似文献   

16.
复杂缝网页岩压裂水平井多区耦合产能分析   总被引:1,自引:0,他引:1  
针对页岩储层水平井压裂开发中复杂缝网形态、纳微米孔隙—复杂缝网—井筒多尺度渗流规律认识不清等问题,开展了针对性的研究:(1)通过巴西劈裂实验,诱导压裂缝的产生;(2)通过X射线CT扫描,观测岩样内部压裂缝形态,测得压裂缝开度;(3)结合压裂缝形态描述和气体在基质—复杂缝网—井筒中的渗流机理,在多尺度统一渗流模型的基础上,建立考虑扩散、滑移及解吸的水平井单段压裂改造产能方程;(4)考虑多级压裂区干扰及水平井筒压降,建立页岩储层多级压裂水平井产能预测模型。研究结果表明:(1)压裂缝形态为复杂网状缝;(2)测得压裂缝开度为4.25~453.00μm,平均为112.00μm;(3)不同缝网形态下页岩气表现出不同非线性渗流规律;(4)随着重改造区裂缝密度、重/弱改造裂缝分布范围的增大,产气量逐渐增加,压裂段间缝网渗流区域发生干扰,产气量增加幅度减小;(5)模拟水平井筒长1 500 m、重度改造区缝网半长100 m时,压裂10级产能效果最好。结论认为,需要合理地控制压裂程度、优化裂缝参数,才能为页岩气压裂优化设计等提供技术支撑。  相似文献   

17.
煤层气井产能预测一直是天然气工业领域试图解决的技术性难题.为探究水力压裂条件下裂隙性煤储层气渗透机理及产能规律,首先考虑其原生裂隙的几何特征对裂缝扩展规律的影响,结合经典PKN模型建立了改进的水力裂缝扩展模型;其次考虑排采过程中水力裂缝几何尺寸变化对煤储层孔隙率的影响,基于储层压力梯度动态方程建立了储层动态渗透率模型;...  相似文献   

18.
水力压裂是实现页岩储层有效开发的重要技术手段,而准确预测页岩气藏压裂井产量是保证页岩气高效开发的基础。以油气藏数值模拟和数值计算方法为工具,在考虑页岩基质块解吸扩散和窜流条件下,建立了页岩气藏气水两相压裂渗流数学模型,推导了数值计算模型,并研制了页岩气藏压裂产能模拟器,定量分析了裂缝参数、物性参数和解吸扩散参数对页岩气压裂井产量的影响。研究表明:水力压裂能有效提高单井产量,是页岩气藏高效开发的有效措施;压裂裂缝导流能力和天然裂缝渗透率是页岩气开采的主控因素,日产气量和日产水量随压裂裂缝导流能力和天然裂缝渗透率增加而增加;基质渗透率和扩散系数对产量的影响相对较小。  相似文献   

19.
页岩储层孔喉细小、渗透率低,水力压裂后形成主裂缝及诱导裂缝网络加剧了页岩气流动的复杂性。为了准确表征页岩气拟稳态渗流特征,提出了离散裂缝耦合多重连续介质系统数学表征方法,并针对储层裂缝分布形态,利用商业数值模拟器建立了考虑吸附/解吸的页岩气藏离散裂缝耦合多重连续介质数值模拟模型。模型中采用局部网格加密的方法描述离散裂缝网络,基于建立的多重连续介质系统数学方法表征压裂后形成的密集分布微小裂缝体系。利用建立的模型,系统分析了储层横向/纵向动用程度以及裂缝导流能力、裂缝半长、裂缝排布方式等裂缝参数对页岩气泄气面积和气井产能的影响。研究发现,增大储层改造体积能够大幅度提高页岩气单井产量,但同时应当考虑主裂缝与次裂缝网络的配置关系;当储层改造体积相同时,最大限度提高裂缝与井筒之间的连通程度是提高页岩气产量的必要条件。研究认为,上述研究结果对页岩气压裂改造设计具有一定的理论指导意义。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号