首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
徐荣声  冯倩  孟泽  李梅 《无机盐工业》2022,54(12):106-112
以宁夏农业废弃物枸杞杆为原料,用不同的活化剂分别制备磷酸-活性炭(P-AC)、氢氧化钾-活性炭(K-AC)、磷酸-氢氧化钾-活性炭(P-K-AC),利用比表面积测试(BET)、X射线衍射(XRD)、红外光谱(FT-IR)、扫描电镜(SEM)解析活性炭的孔结构和表面特性,并探究活性炭对水溶液中亚甲基蓝(MB)的去除效果。研究结果表明:P-K-AC比P-AC、K-AC具有更大的比表面积(1 519.84 m2/g)和总孔体积(0.81 cm3/g),P-AC、K-AC、P-K-AC的平均孔径分别为5.28、2.58、1.99 nm,P-K-AC以微孔为主,K-AC、P-AC均为介孔。3种活性炭表面均分布着丰富的含氧官能团和大量的无定型碳,为吸附MB提供了活性位点。在25 ℃条件下,将10 mg的P-AC、K-AC、P-K-AC分别加入50 mL质量浓度为100 mg/L的MB溶液中用于吸附MB实验。结果表明:P-K-AC的吸附效果最好,吸附率达到95%、吸附量为480.81 mg/g;其次是K-AC,吸附量为352.26 mg/g;P-AC吸附量最小,为225.01 mg/g。P-AC,K-AC、P-K-AC对MB的吸附过程都符合伪二级动力学模型、颗粒内扩散模型和Langmuir等温吸附模型。  相似文献   

2.
以南疆地区盛产的巴旦杏核壳、核桃壳和白杏核壳为原料,采用微波辐照磷酸法分别制备了巴旦杏核壳活性炭(BAC)、核桃壳活性炭(HAC)和白杏核壳活性炭(XAC),干果核壳基质活性炭的制备工艺:10 g干果核壳以固液比1:3(g:mL)浸渍40%磷酸24 h,微波功率640 W,活化时间16 min。采用物理吸附仪、扫描电镜(SEM)、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)等表征方法比较研究了不同种类干果核壳活性炭性能差异。结果表明:巴旦杏核壳、核桃壳和白杏核壳活性炭的热分解过程、残留基团基本一致,活性炭晶型均以非晶态为主。3类干果核壳活性炭表面分布着大量孔洞,且孔洞主要为0.4~1.2 nm的微孔和3~6 nm的中孔。其中,白杏核壳活性炭的性能最优,BET比表面积达981.5 m2/g,总孔容达0.570 cm3/g,亚甲基蓝吸附值达269.6 mg/g,碘吸附值达1 162.8 mg/g。  相似文献   

3.
以造纸黑液中提取的酸不溶木质素(AIL)为原料,K2CO3/尿素为活化剂,制备了多级孔结构的超高比表面积活性炭(SSAC),并对其进行了结构表征,研究了SSAC对亚甲基蓝(MB)溶液的吸附性能。结果表明,木质素原炭(LC)呈质地致密、表面光滑的碎片状,仅存在孔径分布集中在0. 66 nm的微孔结构。SSAC则显示出孔洞丰富的3D泡沫状类珊瑚礁形态,为孔径分布集中于0. 69~1. 71 nm和3. 09~48. 6 nm的微-介孔共存的结构,且介孔数量随活化温度的提高而增加。其中,SSAC-900具有最大的比表面积(2 969. 97 m2/g)和孔容积(2. 018 cm3/g),可以有效快速地吸附MB阳离子染料。吸附等温线实验表明,Langmuir吸附等温线更适用于拟合SSAC对MB的吸附过程;吸附动力学分析显示,SSAC对MB的吸附行为符合准二级动力学模型。  相似文献   

4.
以煤液化沥青为原材料,通过炭化、KOH活化的方法制备高性能活性炭,探讨了碱炭比对活性炭孔隙结构的影响。活性炭孔体积随碱炭比的提升呈现先增加后减小的趋势,在碱炭比为5时,制备出比表面积达到3 188.0 m2/g,孔体积达到1.87 cm3/g的活性炭。通过N2吸附和脱附、X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对活性炭样品进行表征。在吸附研究中,选择气态间二甲苯为吸附质进行动态吸附实验。探讨了煤液化沥青基活性炭对间二甲苯的吸附性能及其孔体积与吸附量的关系。间二甲苯的吸附量与活性炭的孔体积成正比,在300×10-6下,间二甲苯的最大吸附量可达到1 174.7 mg/g。活性炭孔径在1.4~5.0 nm的孔体积对间二甲苯的吸附起主要作用。  相似文献   

5.
徐荣声  孟泽  冯倩  王萍  孙冬  李梅 《无机盐工业》2023,(12):119-127
以宁夏农业废弃物玉米芯为原料,制备对亚甲基蓝(MB)吸附性能最优条件下的氯化锌活性炭(ZnAC),并在此条件基础上利用氯化锌-水蒸气来协同活化制备不同活化温度下的活性炭(ZnHAC)。利用BET、XRD、FT-IR和SEM分析ZnAC和ZnHAC的结构和表面特性,阐释活化机理。结果表明:ZnCl2单独活化玉米芯的最佳条件为活化温度为500℃、活化时间为1 h、锌料质量比为1.5∶1;所制活性炭的比表面积为2 299.75 m2/g,累积总孔容为1.28 cm3/g,对MB吸附量为531.56 mg/g;此活性炭介孔率高达95%以上,且随着温度的升高,介孔率都有所增加,说明提高温度有利于介孔的形成。相对于ZnACT-1.5-1,通入水蒸气之后ZnHACT-1.5-1的比表面积和孔容都有明显增大,其中ZnHAC800-1.5-1的比表面积比ZnAC800-1.5-1增加了349 m2/g,而介孔孔容、总孔容及孔径近乎...  相似文献   

6.
以芦苇秸秆为原料,KOH为活化剂,通过单因素实验及正交实验优化芦苇活性炭的制备工艺,测定最优工艺下制备的活性炭对亚甲基蓝的吸附性能和吸附动力学,并进行红外光谱分析、BET比表面积结构分析。结果表明,最佳制备工艺为700℃、20%KOH质量分数、3 h时制备的芦苇活性炭。该活性炭理论最大吸附量为648.77 mg/g, Langmuir等温吸附曲线(R2=0.982 0)和二级动力学吸附曲线(R2=0.980 8)能够更好地描述吸附过程。红外光谱分析结果表明,所制备的活性炭中生成了酰胺基团。BET比表面积测定结果表明,最优工艺下制备的芦苇活性炭的比表面积为1 183.40 m2/g,总孔容为0.59 cm3/g,平均孔径为2.00 nm。  相似文献   

7.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

8.
以CO2为活化气氛,通过一步快速热解活化法从黑山煤粉与生物质混合物中制取活性炭。讨论了不同质量比率、活化温度和CO2浓度对活性炭比表面积的影响。通过N2吸附(BET)、扫描电镜(SEM)、拉曼光谱(Raman)和红外光谱(FTIR)对活性炭的性能进行了表征。确定了制备活性炭的最佳条件为活化温度900℃、质量比1、CO2体积分数30%、活化时间120min时,活性炭的比表面积和孔容最大,分别为901m2/g和0.39cm3/g。最后,用乙酸乙酯吸附量验证了其吸附性能,最大累积吸附量为766.51mg/g。  相似文献   

9.
以HCl-HF法脱矿物质处理后的云南莲花塘褐煤和内蒙古白音华褐煤以及这两种褐煤所制备的半焦为原料,将原料以KOH为活化剂的化学活化法制备活性炭,考察KOH用量和炭化终温对煤基活性炭比表面积、孔径分布及孔体积的影响。利用X射线衍射仪(XRD)、比表面积与孔隙分析仪(BET)、扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)等测试手段表征活性炭的结构及表面性质。利用电化学工作站对活性炭电极进行循环伏安特性(CV)、交流阻抗特性(EIS)和充放电特性(GCD)分析,利用蓝电电池测试系统测试扣式电容器的电容保持率。结果表明:采用脱矿物质处理后的褐煤为原料,以KOH为活化剂的化学活化法,碱煤质量比为4∶1,炭化终温为800℃的条件下制备的活性炭的比表面积和孔体积最大;在此工艺条件下,莲花塘褐煤基活性炭的比表面积为2 728 m3/g,孔体积为1.58 cm3/g,白音华褐煤基活性炭的比表面积为1 824 m3/g,孔体积为1.00 cm3/g;将这两种活性炭作为电极材料,所制备的活性炭电极在电流密度为1...  相似文献   

10.
以成型、烘焙处理后的玉米秸秆为原料,磷酸作为活化剂制备了玉米秸秆基活性炭,并对活性炭样品进行表征。同时以碘吸附值、亚甲基蓝吸附值和焦糖脱色率为指标测定其吸附性能,并对制备条件进行优化。实验结果表明:玉米秸秆制备活性炭的最佳工艺条件为浸渍比即m(55%H3PO4)∶m(玉米秸秆)为4∶1、活化温度400℃、活化时间100 min,此条件下活性炭的得率为47.78%,制得的活性炭具有良好的吸附性能,碘吸附值、亚甲基蓝吸附值及焦糖脱色率分别达到864 mg/g、 210 mg/g和100%。活性炭比表面积可达1 105 m2/g,总孔容积为0.745 cm3/g,微孔孔容为0.287 cm3/g,中孔孔容为0.354 cm3/g,孔径分布集中于5 nm以内,约占73.56%,平均孔径为2.697 nm。FT-IR分析显示:在活化过程中磷酸与玉米秸秆发生交联作用,生成的活性炭损失了玉米秸秆的部分官能团。  相似文献   

11.
通过对废弃粉末活性炭(WPAC)进行热解再生实验,采用热重(TG)、红外分析(FTIR)、表面分析(BET)、X射线衍射(XRD)表征手段,分析了废弃粉末活性炭热解再生前后的比表面积、孔隙结构及再生过程中有机物分解的初步规律。同时比较了废弃粉末活性炭再生前后对亚甲基蓝(MB)的吸附性能,对WPAC热解再生效果进行了评价。实验得出的最佳热解再生条件是以氮气为载气,热解温度650℃,热解时间2h。在此再生条件下,再生炭(RPAC)的比表面积为1161.4m2/g,恢复到新鲜活性炭的94.5%;废弃粉末活性炭再生前后对亚甲基蓝的吸附等温线符合Langmuir模型,吸附容量为420.5mg/g,恢复到新鲜炭的89.6%。由此结果表明,WPAC经热解再生后表面化学性质、孔隙结构及吸附性能均得到有效恢复。  相似文献   

12.
干法制备高中孔率生物质成型活性炭   总被引:2,自引:0,他引:2       下载免费PDF全文
以锯末为原料,氯化锌为活化剂,不添加黏结剂,采用干法混合后直接成型活化制备高中孔率生物质成型活性炭。为考察这种工艺的可行性,通过单因素实验,以亚甲基蓝吸附值为评价指标,考察了盐料比、活化温度、活化时间与成型密度对生物质成型活性炭吸附性能的影响,得出较优工艺条件为:盐料比1.0:1,活化温度950℃,活化时间为60min,成型密度为1.4g·cm-3。在此工艺条件下制备得到的生物质成型活性炭,其亚甲基蓝吸附值为387mg·g-1,BET比表面积为2104m2·g-1,平均孔径为3.11nm,总孔容为1.63cm3·g-1,中孔孔容为1.17cm3·g-1,中孔率高达71.8%,初步证明了干法制备高中孔率生物质成型活性炭工艺的可行性。  相似文献   

13.
铝锂合金化学铣切的化铣废液(CMW)会对环境造成严重影响。为有效解决废液处理问题,本文首次利用铝锂合金化铣废液合成出对染料具有优良吸附性能的纳米片状γ-AlOOH。CMW中的NaAlO2与H2O2在室温条件下反应5min即可合成出比表面积高达278m2/g的纳米片状γ-AlOOH。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和N2吸附-脱附等表征手段,系统研究了H2O2和Al2O3摩尔比[(5∶1)~ (15∶1)]对合成的γ-AlOOH结构、形貌及结晶度的影响。结果表明,随摩尔比增加,γ-AlOOH的结晶度、晶体粒度和化学基团含量提高,比表面积由137m2/g增加至278m2/g。通过γ-AlOOH对亚甲基蓝(MB)的吸附性能评价了γ-AlOOH的实用性。γ-AlOOH纳米片对MB具有良好的吸附性能,吸附等温线符合Langmuir模型,最大吸附量达173.30mg/g。因此以铝锂合金化铣废液为原料合成的γ-AlOOH具有较高的应用价值,可用作去除废水中染料的高效吸附剂。  相似文献   

14.
以高锰酸钾(KMnO4)为氧化剂、硫酸亚铁铵[(NH42Fe(SO42]为还原剂,用水热氧化还原反应制备了层状δ-二氧化锰和隧道型α-二氧化锰纳米材料。用X射线衍射(XRD)、扫描电镜(SEM)和氮气吸-脱附技术对产物的晶型、形貌及孔结构进行了表征。实验结果表明,δ-二氧化锰呈花状微球形貌,具有介孔结构(平均孔径为3.4 nm),BET比表面积为219 m2/g;α-二氧化锰呈纳米线束形貌,具有部分介孔结构(平均孔径为35.7 nm和154.6 nm),BET比表面积为26 m2/g。研究了不同晶型纳米二氧化锰对亚甲基蓝的吸附性能。实验结果表明,在相同条件下α-二氧化锰的吸附性能优于δ-二氧化锰,且在碱性环境下吸附效果较好。当反应时间达到120 min时,α-二氧化锰和δ-二氧化锰对亚甲基蓝的去除率分别为84.4%和82.9%。  相似文献   

15.
Mineral matter in a residue(RC G) from coal gasification(CG) was removed by two-stage acid leaching. Hierarchical activated carbon(HAC) was prepared by activating RC Gwith CO_2. The performance of HAC on removing methylene blue(MB) from an aqueous solution was investigated. HAC was characterized by N_2 adsorption–desorption isotherm, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results show that HAC exhibits hierarchical pore structure with high specific surface area(862.76 m~2·g~(-1)) and total pore volume(0.684 cm~3·g~(-1)), and abundant organic functional groups. The adsorption equilibrium data of MB on HAC are best fitted to the Redlich-Peterson. The kinetic data show that the pseudo-first-order model is more suitable at low MB concentration, while the advantages of the pseudo-second-orderand the Elovich models are more obvious as the concentration increases. According to the thermodynamic parameters, the HAC-MB adsorption process is spontaneous and endothermic.  相似文献   

16.
以农业废弃物棉秆为原料,采用氢氧化钾活化法制备活性炭,并用于吸附含苯酚废水中的苯酚。棉秆基活性炭的最佳制备条件为棉秆先炭化,以KOH溶液为活化剂,KOH与棉秆炭的质量比(物料比)1.5:1,活化温度800 ℃、活化时间70 min,此条件下制备的棉秆活性炭亚甲基蓝的吸附值为342.33 mg/g,碘吸附值为1 368.65 mg/g,其BET比表面积达到了1 735.94 m2/g,总孔容积0.36 cm3/g,平均孔径2.33 nm。将此活性炭用于吸附苯酚,苯酚质量浓度60 mg/L的50 mL废水中,当pH值为7,吸附时间2 h,活性炭投放量为50 mg时,苯酚去除率最高可达98%。对此吸附过程进行动力学分析,结果表明准二级动力学模型能很好的描述此活性炭吸附苯酚的过程。  相似文献   

17.
以氯化锌浸渍的木屑为原料,黏土为粘结剂,制备炭陶复合吸附材料。讨论了炭化温度和保温时间对其吸附性能的影响,并对其孔隙结构进行了表征。结果表明,随温度和保温时间的增加,炭陶复合吸附材料的碘吸附值和亚甲基蓝吸附值呈先上升后下降的趋势;木屑受到活化作用形成活性炭而发生收缩,在活性炭和陶土之间形成空隙,有利于形成孔隙结构发达的炭陶复合吸附材料。在温度500℃、保温时间1 h的较佳工艺条件下,制得炭陶复合吸附材料的比表面积为809.5 m2/g,总孔容积为0.298 cm3/g,中孔容积为0.185 cm3/g,微孔容积为0.113 cm3/g,炭陶的含炭量为60.7%,碘吸附值为680.5 mg/g,亚甲基蓝吸附值为165.0 mg/g。  相似文献   

18.
In this work we investigated the effect of nitric acid concentration on the pore structure, surface chemistry and liquid phase adsorption of olive stone based activated carbon prepared by mixing process using phosphoric acid and steam as activating agents. Chemicals and textural characterization show that the increase of HNO3 concentration increases considerably the total acidic groups but decreases specific surface area and pore volume. The study of adsorption in aqueous solutions of two organics, phenol and methylene blue, on raw and oxidized activated carbon indicates that the treatment of mixed activated carbon with different concentrations of nitric acid improves the adsorbent capacity for methylene blue at HNO3 concentrations less or equal to 2 mol·L 1, while it has a negative effect on phenol adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号