共查询到20条相似文献,搜索用时 15 毫秒
1.
地表蒸散发(ET)是水循环和能量循环的关键组成部分,具有极其重要的应用价值。研究旨在发展一种可靠且高效的深度神经网络(DNN)模型,基于MODIS可见光数据、微波AMSR2亮度温度和数字高程DEM,实现全天候全球高分辨率每日ET的估算。利用FLUXNET和AmeriFlux通量网6种代表性土地覆盖类型的148个站点观测数据来训练和验证DNN模型,结果表明:DNN模型可以有效建立卫星数据(MODIS、AMSR2数据)与ET之间的关系;6种地类的ET估算结果验证的平均绝对误差(MAE)为0.16—0.63 mm/d,均方根误差(RMSE)为0.27—0.89 mm/d,除裸地的决定系数(R2)为0.37以外,其他地类的R2均>0.7。通过对比模型估算的ET与MOD16A2和GLEAM的ET产品,结果表明3种产品的ET空间分布特征相似,ET值非常接近,估算得到的全球2020年日均ET为0—4 mm/d。 相似文献
2.
基于MODIS和AMSR-E遥感数据的土壤水分降尺度研究 总被引:3,自引:0,他引:3
微波传感器获得的土壤水分产品空间分辨率一般都很粗,而流域尺度上的研究需要中高分辨率的土壤水分数据。用MODIS逐日地表温度产品MOD11A1和逐日地表反射率产品MOD09GA构建温度-植被指数特征空间,并计算得到TVDI(Temperature Vegetation Dryness Index)指数,它与土壤水分呈负相关关系,能够反映土壤水分的空间分布模式,但并不是真实的土壤水分值。在AMSR-E像元尺度上求得TVDI与土壤水分的负相关系数,进而对VUA AMSR-E土壤水分产品进行降尺度计算得到0.01°分辨率的真实土壤水分值。经NAFE06(The National Airborne Field Experiment 2006)试验地面采样数据验证,降尺度后的土壤水分均方根误差平均值为6.1%。 相似文献
3.
MODIS日尺度的地表温度受到天气影响,有效像元信息严重缺失,这对数据稀缺区域尤为重要。以古尔班通古特沙漠为研究区,探索了采用AMSR-2的垂直极化亮度温度与植被指数对地表温度空间降尺度的方法,并用此方法填补了2018年MODIS的缺失像元。(1)通过十折交叉验证,对4种机器学习算法(Cubist、DBN、SVM、RF)、10个波段组合、2个空间尺度(5 km、10 km)下的训练模型进行了分析,表明RF算法精度明显高于其他3种算法,C09波段组合的验证精度高于其他波段组合。(2)构建了2个鲁棒性的随机森林算法地表温度降尺度模型(5 km|RF|09、10 km|RF|09),将AMSR-2亮度温度降尺度到1km分辨率,表明5 km|RF|09模型反演结果更为合理,MODIS与站点验证的R2分别为0.971、0.930,RMSE分别为3.38 K、4.71 K,MAE分别为2.51 K、3.84 K。(3)降尺度结果填补MODIS地表温度缺失像元,将其应用到古尔班通古特沙漠长时间序列的陆表温度分析,可为数据稀缺区域数据获取提供科学参考。 相似文献
4.
基于MODIS数据的我国天山典型区积雪特征研究 总被引:1,自引:0,他引:1
准确监测天山地区积雪面积和积雪日数对合理利用水资源及分析区域气候变化有重要意义。MODIS每日积雪产品可以为大面积快速积雪制图与监测提供依据,但因云量较高成为其应用的瓶颈。利用结合MODIS产品的时间与空间信息有效地减少了云对MODIS积雪产品的影响,并利用改进的MODIS积雪数据和DEM分析2002~2009年天山地区积雪面积和积雪日数的变化特征。结果表明:积雪频率总体上随着海拔升高而增大;不同坡向积雪面积差异明显,西北坡积雪覆盖率最高,北坡、西坡和东北坡次之,南坡和东南坡的积雪覆盖率最低;2006~2008年研究区积雪面积出现低值,年内最大积雪面积呈逐年减少的趋势;随着海拔下降,积雪日数逐渐变小,天山南部地区积雪日数仅为40 d以下;积雪日数大的区域年际积雪日数变化相对稳定,积雪日数少于40 d的区域积雪日数的变异系数最大,年际积雪日数变化不稳定。 相似文献
5.
耕地面积的提取具有重要的现实和研究意义。提出一种基于多层尺度转换的方法,获得尺度之间的精度系数,以提高大尺度遥感影像耕地面积解译的精度。以苏北平原为例,利用该方法,以MODIS和中巴资源卫星(CBERS)影像为数据,以抽样统计的方法计算了3种尺度之间的耕地面积之间的系数,逐层推进,最终得出大尺度影像MODIS与地面真实耕地面积的统计系数,修正MODIS影像的解译面积。结果表明:该方法具有良好的操作性,显著提高MODIS影像耕地面积的提取精度,可以运用于大区域耕地面积的提取。 相似文献
6.
为了克服GRACE数据低空间分辨率的局限,采用序列到序列(Seq2Seq)模型,对三种输入时间序列(地表温度、归一化植被指数和降雨)与GRACE时间序列的经验关系进行建模,将美国加利福尼亚州的GRACE数据空间分辨率由1°降尺度到0.1°。结果表明,Seq2Seq模型能获取到较为准确的时序特征与映射关系,通过遗传算法选出最佳超参数后的Seq2Seq模型,纳什系数可达0.97,均方根误差仅为0.23。通过实测地下水的验证可知,降尺度的GRACE数据与实测值有较强的相关性,相关系数最高可达0.85,能较为准确地反映地下水储量的变化。 相似文献
7.
积雪面积比例(Fractional Snow Cover, FSC)是定量描述单位像元内积雪覆盖面积(Snow Cover Area, SCA)与像元空间范围的比值,可为区域气候模拟、水文模型等提供积雪分布的定量信息。MODIS FSC产品是根据经验模型计算得到,并没有考虑地形、植被和地表温度等环境因素的影响,在青藏高原的验证精度低。针对此问题,考虑青藏高原地区环境因素(地形、植被、地表温度)对FSC制备的影响,基于多元自适应回归模型(Multivariate Adaptive Regression Splines, MARS)和线性回归模型分别建立FSC制备的非参数回归模型和经验回归模型。用Landsat 8地表反射率的数据和SNOMAP算法制备FSC的参考数据集。选取一部分参考数据集作为模型的训练数据集,另一部分作为模型的检验数据集。研究结果表明:MARS方法估计FSC的精度明显高于线性回归模型和原有的MODIS FSC制备方法。MARS的总体R、RMSE、MAE分别为0.791、0.103、0.058。在线性回归模型中精度最高的总体R、RMSE、MAE分别为0.647、0.128、0.072。MODIS 原有FSC制图方法的总体R、RMSE、MAE分别为0.595、0.221、0.170。考虑了环境信息的MARS方法更加适用于青藏高原地区FSC制备。本研究为制备青藏高原地区更高精度的FSC数据提供了新思路。 相似文献
8.
祁连山区积雪类型丰富、判识复杂,是中国积雪研究的典型区域。因此,精确地监测祁连山区积雪面积变化及其时空演变,对祁连山区生态环境和社会经济发展等具有重要意义。FY-3C MULSS利用多阈值积雪指数模型提供全球日积雪覆盖产品,FY-4A AGRI传感器每15~60 min提供一景覆盖全球的多光谱影像。基于FY-4A AGRI高时间分辨率的特征,构建适合于FY-4A号数据的动态多阈值多时相云隙间积雪识别方法,很大程度上减小了云对光学数据识别积雪造成的影响,并结合FY-3C MULSS积雪覆盖日产品较高空间分辨率的优势,融合得到去除云后的FY3C4积雪覆盖数据。利用Landsat 8 OLI卫星数据对融合后的积雪数据进行对比验证,结果表明融合FY-3C和FY-4A后的数据能更好地判识祁连山区的积雪覆盖情况。以MODIS MOD10A2积雪产品为真实值,随机检验了2018年3月~2019年3月融合后数据的积雪判识精度,发现无云情况下方法的总体精度可达到85.25%。进一步研究发现祁连山区积雪面积在海拔、气候和坡向等因素的影响下时空分布极不均匀,总体呈现出冬春季节大于夏秋季节,以及东部积雪面积大于西部积雪面积的特征。 相似文献
9.
以MODIS(Terra)影像数据为数据源,对比了不同分裂窗算法反演2012年太湖湖泊表面温度结果,并通过太湖水环境自动监测站网实测数据与不同算法结果进行了精度对比分析.结果表明,MODIS地表温度产品(Version 5)和覃志豪算法产品所反演的太湖表面温度精度都很高,其与实测数据的均方根误差分别为1.189℃和0.987℃.在综合数据获取、处理和适用性的基础上,研究认为,在水文、气象和生态等科学研究中可以直接利用MODIS地表温度产品(Version 5)来获取太湖地区的湖泊表面水温. 相似文献
10.
土壤水分是陆地生态系统中最重要的组成部分,如何有效地得到高精度的土壤水分产品成为当前研究最为关注的问题。被动微波遥感具有监测面积大、重访周期短、对土壤水分敏感等优点,成为反演土壤水分最有潜力的方式。基于SMOS(Soil Moisture and Ocean Salinity)和AMSR2(The Advanced Microwave Scanning Radiometer-2)数据,通过研究L波段与C波段融合亮度温度在土壤水分反演中的潜力,发展多频率土壤水分反演算法,并对黑河上游4个像元开展土壤水分反演研究。结果表明:①利用L/C组合亮温反演结果与实测数据较为吻合,长时间内变化趋势一致,相关系数为0.841,均方根误差为0.063 m3/m3。②通过与SMOS和AMSR2官方土壤水分产品比较发现,AMSR2土壤水分产品存在明显的低估,SMOS土壤水分产品缺失值较多,无法得到较为完整的土壤水分时间序列;利用L/C多频率组合反演得到的结果明显优于官方土壤水分产品。融合L与C波段亮温数据,可有效提高反演土壤水分精度,实现高精度土壤水分的获取。 相似文献
11.
一种基于多尺度最大信息熵和梯度的图像融合算法 总被引:1,自引:0,他引:1
提出了一种多尺度最大信息熵(Max Information Entropy,MIE)及梯度的图像融合算法,该算法在对源图像多尺度分解的基础上,根据低频小波系数及高频小波系数的特点,把信息熵引用到小波低频系数的选择中,根据局部信息熵的大小确定小波系数的选择;而高频采用基于最大梯度值的方法,最后对所选小波系数进行重构,即可得到融合图像.二者的结合,对图像的细节处理更加细致,又有效地消除冗余信息.通过实验分析,结果表明该算法与其他基于区域的方法相比,提高了融合效果. 相似文献
12.
基于MODIS 影像数据的劈窗算法研究及其参数确定 总被引:12,自引:0,他引:12
劈窗算法是目前由热红外遥感数据获取陆面温度的主要方法。在介绍劈窗算法的一般表现形式的基础上, 我们推导出适合于MOD IS 影像数据的劈窗算法。大气透过率和地表比辐射率是求解地表温度的两个关键参数。由于MOD IS 图像分辨率较低,MOD IS 像元主要由水面、植被和裸土3种地物类型构成, 故可依据这3 种地物的构成比例确定地表比辐射率。从遥感影像上反演大气的水汽含量, 再根据大气水汽含量与大气透过率的关系计算出大气透过率。最后将文中推导的劈窗算法用于江苏省地表温度的反演。反演出来的地表温度图显示出明显的地表温度空间差异、城市热岛效应和不同的地物类型。 相似文献
13.
基于SPOT-VGT数据,由短波红外、红和蓝波段反射率计算了表征地表土壤湿度的可见光—短波红外干旱指数(VSDI),通过对1km空间分辨率的VSDI影像进行空间升尺度处理,采用多种函数建立了25km空间分辨率AMSR-E土壤湿度数据与VSDI指数的关系,发现二者关系最符合S型曲线模型,拟合残差在空间上呈现随机分布的特征。基于S曲线函数关系下的1km预测土壤湿度和残差值,对AMSR-E土壤湿度进行降尺度模拟,得到1km空间分辨率的土壤湿度。将原始AMSR-E土壤湿度和实测数据对降尺度结果分别比较验证后,表明基于该方法获得的土壤湿度模拟精度较高。 相似文献
14.
土壤水分是陆地生态系统和水循环的重要状态变量,在植被生长监测、农作物产量评估等研究中均发挥着重要作用。为了消除植被散射的影响,进而实现农田地表土壤水分的高精度反演,以时间序列Sentinel-1影像及MODIS产品为实验数据,基于高级积分方程模型和比值植被模型的耦合模型,通过采用不同光学植被参数和VH交叉极化后向散射系数,分别对农田植被散射贡献进行表征,消除植被散射的影响,进而实现土壤水分的高精度反演。结果表明:当利用VH极化进行参数化植被散射贡献时,标定的耦合模型,虽然可消除对光学植被参数的依赖并较好地模拟Sentinel-1卫星观测,但土壤水分反演结果效果欠理想,相关系数R最大仅为0.54;与VH极化相比,利用光学植被参数表征植被散射贡献时,土壤水分整体反演效果较理想,R最大达到0.79,但光学植被参数反演结果在不同站点存在显著的空间差异性,R介于0.07~0.79之间。因此,在未来研究中可尝试将雷达数据与光学数据协同反演,以期在消除植被散射影响的基础上,实现植被覆盖区域土壤水分的高精度反演及动态变化监测。 相似文献
15.
以新疆维吾尔自治区全境为研究区域,采用中高分辨率MODIS遥感数据和地形数据,在第二次全国土壤普查数据库的支持下,采用自动分类方法,探讨了遥感技术在常规土壤调查工作受限制的干旱地区进行土壤调查的效果和适用性。研究中使用了MODIS地表反射率、植被指数、地表昼夜温度等数据产品,提取了多种图像特征,并结合了DEM生成的地形参数。研究区土壤分类系统在发生学分类的基础上集合遥感信息特征进行了调整,形成了具有26个土壤类型及特殊地表覆被的土壤遥感分类系统。经分类试验,总体精度为70%左右。
相似文献
相似文献
16.
人工神经网络为数据融合提供了新的理论方法和技术手段,在数据融合的各个方面具有广泛的应用前景。自适应共振理论(ART)是一种无监督神经网络,能够实现对输入的任何模拟信号的自动识别和分类。据此提出了一种以ART2网络聚类分析为核心的数据融合算法,探讨了ART2网络用于特征层数据融合实现模式识别/分类的机理,最后给出该算法在一例模式识别/分类中的应用-实现对工业控制系统中设备运行状态的实时监测和故障诊断,验证了该算法的有效性和可行性。 相似文献
17.
18.
为降低突发事件监测的无线传感器网络(WSN)的能量消耗和数据冗余,设计并实现一种基于事件驱动的动态分簇BP神经网络数据融合算法(EBPDF)。其中动态成簇以及簇头选举过程基于事件严重程度和节点剩余能量,簇的生命周期和簇的覆盖范围根据事件紧急程度和节点剩余能量进行动态调整。同时,为减少网络通信量,将神经网络层次结构与WSN的簇结构相结合,在动态形成的簇结构中应用三层神经网络模型,通过神经网络算法从采集到的大量原始数据中提取出少量特征值,并发送到汇聚节点,从而延长网络生命周期,降低数据传输的冗余度。理论仿真实验证明,与LEACH算法相比,该算法既能有效降低网络通信流量,又能减少节点通信次数。 相似文献
19.
将数据融合技术应用于路由协议中,可以有效减少数据通信量,从而降低能耗,延长网络的生存时间。对近几年比较新型的、基于数据融合的路由算法MLR、GRAN、MFST、GROUP等进行了详细的分析比较,总结出了其优缺点和应用范围。融合以上路由协议的优点.在数据融合基础上兼顾局部发送功率的最小化和能耗的均匀分布,构造出MEROUP算法模型。 相似文献
20.
将数据融合技术应用于路由协议中,可以有效减少数据通信量,从而降低能耗,延长网络的生存时间。对近几年比较新型的、基于数据融合的路由算法MLR、GRAN、MFST、GROUP等进行了详细的分析比较,总结出了其优缺点和应用范围。融合以上路由协议的优点,在数据融合基础上兼顾局部发送功率的最小化和能耗的均匀分布,构造出MEROUP算法模型。 相似文献