首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the problem of robust matrix root‐clustering is addressed. The studied matrices are subject to both polytopic and unstructured uncertainties. An original point is the large choice of clustering regions enabled by the proposed approach since these regions can be unions of possibly disjoint and non‐symmetric subregions of the complex plane. The precise purpose is, considering a specified polytope, to determine the greatest robustness bound on the unstructured uncertainty such that robust matrix root‐clustering is ensured. To reduce conservatism in the derivation of the bound, the reasoning relies on a framework based upon parameter‐dependent Lyapunov functions. The bound value is computed by solving an ?? ?? ? problem. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
This paper considers quadratic stabilizability and H feedback control for stochastic discrete‐time uncertain systems with state‐ and control‐dependent noise. Specifically, the uncertain parameters considered are norm‐bounded and external disturbance is an l2‐square summable stochastic process. Firstly, both quadratic stability and quadratic stabilization criteria are presented in the form of linear matrix inequalities (LMIs). Then we design the robust H state and output feedback H controllers such that the system with admissible uncertainties is not only quadratically internally stable but also robust H controllable. Sufficient conditions for the existence of the desired robust H controllers are obtained via LMIs. Finally, some examples are supplied to illustrate the effectiveness of our results.  相似文献   

3.
This paper mainly studies the locally/globally asymptotic stability and stabilization in probability for nonlinear discrete‐time stochastic systems. Firstly, for more general stochastic difference systems, two very useful results on locally and globally asymptotic stability in probability are obtained, which can be viewed as the discrete versions of continuous‐time Itô systems. Then, for a class of quasi‐linear discrete‐time stochastic control systems, both state‐ and output‐feedback asymptotic stabilization are studied, for which, sufficient conditions are presented in terms of linear matrix inequalities. Two simulation examples are given to illustrate the effectiveness of our main results.  相似文献   

4.
This paper is concerned with the stability analysis problems of discrete‐time systems with time‐varying delays using summation inequalities. In the literature focusing on the Lyapunov‐Krasovskii approach, the Jensen integral/summation inequalities have played important roles to develop less conservative stability criteria and thus have been widely studied. Recently, the Jensen integral inequality was successfully generalized to the Bessel‐Legendre inequalities constructed with arbitrary‐order Legendre polynomials. It was also shown that general inequality contributes to the less conservatism of stability criteria. In the case of discrete‐time systems, however, the Jensen summation inequality are hardly extensible to general ones since there have still not been general discrete orthogonal polynomials applicable to the developments of summation inequalities. Motivated by such observations, this paper proposes novel discrete orthogonal polynomials and then successfully derives general summation inequalities. The resulting summation inequalities are discrete‐time counterparts of the Bessel‐Legendre inequalities but are not based on the discrete Legendre polynomials. By developing hierarchical stability criteria based on the proposed summation inequalities, the effectiveness of the proposed approaches is demonstrated via three numerical examples for the stability analysis of discrete‐time systems with time‐varying delays.  相似文献   

5.
In this paper, we address the ?? model reduction problem for linear time‐invariant discrete‐time systems. We revisit this problem by means of linear matrix inequality (LMI) approaches and first show a concise proof for the well‐known lower bounds on the approximation error, which is given in terms of the Hankel singular values of the system to be reduced. In addition, when we reduce the system order by the multiplicity of the smallest Hankel singular value, we show that the ?? optimal reduced‐order model can readily be constructed via LMI optimization. These results can be regarded as complete counterparts of those recently obtained in the continuous‐time system setting.  相似文献   

6.
7.
This brief paper addresses the finite‐time stability problem of switched positive linear systems. First, the concept of finite‐time stability is extended to positive linear systems and switched positive linear systems. Then, by using the state transition matrix of the system and copositive Lyapunov function, we present a necessary and sufficient condition and a sufficient condition for finite‐time stability of positive linear systems. Furthermore, two sufficient conditions for finite‐time stability of switched positive linear systems are given by using the common copositive Lyapunov function and multiple copositive Lyapunov functions, a class of switching signals with average dwell time is designed to stabilize the system, and a computational method for vector functions used to construct the Lyapunov function of systems is proposed. Finally, a concrete application is provided to demonstrate the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a finite‐time stability results of linear delay fractional‐order systems is investigated based on the generalized Gronwall inequality and the Caputo fractional derivative. Sufficient conditions are proposed to the finite‐time stability of the system with the fractional order. Numerical results are given and compared with other published data in the literature to demonstrate the validity of the proposed theoretical results.  相似文献   

9.
This paper investigates asymptotic stability in probability and stabilization designs of discrete‐time stochastic systems with state‐dependent noise perturbations. Our work begins with a lemma on a special discrete‐time stochastic system for which almost all of its sample paths starting from a nonzero initial value will never reach the origin subsequently. This motivates us to deal with the asymptotic stability in probability of discrete‐time stochastic systems. A stochastic Lyapunov theorem on asymptotic stability in probability is proved by means of the convergence theorem of supermartingale. An example is given to show the difference between asymptotic stability in probability and almost surely asymptotic stability. Based on the stochastic Lyapunov theorem, the problem of asymptotic stabilization for discrete‐time stochastic control systems is considered. Some sufficient conditions are proposed and applied for constructing asymptotically stable feedback controllers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates the quadratic stability and stabilization of a class of matrix second‐order time‐varying systems. All the system matrices including the second‐order differential coefficient matrix are assumed to have the time‐varying norm‐bounded parameters. Necessary and sufficient conditions for the quadratic stability and stabilization of such time‐varying systems are derived. All the results are obtained in terms of linear matrix inequalities. Two illustrative examples are given to show that our results are effective and less conservative than the results obtained by other researchers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This paper considers the finite‐time stability of fractional order impulsive switched systems. First, by using the fractional order Lyapunov function, Mittag–Leffler function, and Gronwall–Bellman lemma, two sufficient conditions are given to verify the finite‐time stability of fractional order nonlinear systems. Then, the concept of finite‐time stability is extended to fractional order impulsive switched systems. A sufficient condition is given to verify the finite‐time stability of fractional order impulsive switched systems by combining the method of average dwell time with fractional order Lyapunov function. Finally, two numerical examples are provided to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we consider the asymptotic stability in probability for discrete‐time stochastic coupled systems on networks with multiple dispersal (DSCSM). We begin with modeling a DSCSM on multiple digraphs and consequently construct a global Lyapunov function based on the topological structure of multiple digraphs. Using the Lyapunov method combined with the graph theory and the supermartingale convergence theorem, several stability criteria for DSCSM are derived. In what follows, the given results are utilized to analyze a stochastic coupled oscillator model. Finally, 2 numerical examples are also given to demonstrate the feasibility of the proposed results.  相似文献   

13.
This paper investigates pth moment regional stability, stabilization, and generalized pole assignment of stochastic systems, which are most useful in many specific systems and applications. With the help of the generalized ‐representation method, the necessary and sufficient conditions of pth moment regional stability and stabilization of stochastic systems are addressed. Meanwhile, the generalized pole assignment of stochastic systems is also considered. Finally, two examples are presented to show the effectiveness of the proposed methods.  相似文献   

14.
This paper studies mean square exponential stability of linear stochastic neutral‐type time‐delay systems with multiple point delays by using an augmented Lyapunov‐Krasovskii functional (LKF) approach. To build a suitable augmented LKF, a method is proposed to find an augmented state vector whose elements are linearly independent. With the help of the linearly independent augmented state vector, the constructed LKF, and properties of the stochastic integral, sufficient delay‐dependent stability conditions expressed by linear matrix inequalities are established to guarantee the mean square exponential stability of the system. Differently from previous results where the difference operator associated with the system needs to satisfy a condition in terms of matrix norms, in the current paper, the difference operator only needs to satisfy a less restrictive condition in terms of matrix spectral radius. The effectiveness of the proposed approach is illustrated by two numerical examples.  相似文献   

15.
A delay‐dependent criterion for the global asymptotic stability of a class of uncertain discrete‐time state‐delayed systems using various combinations of quantization and overflow nonlinearities is presented. The proposed criterion is in the form of a linear matrix inequality and, hence, computationally tractable. A numerical example highlighting the usefulness of the proposed criterion is given. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This paper proposes a novel summation inequality, say a polynomials‐based summation inequality, which contains well‐known summation inequalities as special cases. By specially choosing slack matrices, polynomial functions, and an arbitrary vector, it reduces to Moon's inequality, a discrete‐time counterpart of Wirtinger‐based integral inequality, auxiliary function‐based summation inequalities employing the same‐order orthogonal polynomial functions. Thus, the proposed summation inequality is more general than other summation inequalities. Additionally, this paper derives the polynomials‐based summation inequality employing first‐order and second‐order orthogonal polynomial functions, which contributes to obtaining improved stability criteria for discrete‐time systems with time‐varying delays. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
We address the design of dynamic parameter‐dependent controllers with antiwindup action to locally stabilize in the input‐to‐state sense a class of discrete‐time linear parameter‐varying (LPV) systems. Such a class consists of systems with delayed state, saturating actuators, and subject to energy bounded disturbances. Moreover, the interval time‐varying delay can have a limited variation rate between two consecutive instants allowing to achieve less conservative design conditions. Differently from other conditions in the literature, the proposed convex synthesis methods allow to design dynamic controllers of different orders. Additionally, the user can choose to feed back only the current output of the system or its delayed ones. Thanks to the embedded (parameter dependent) antiwindup action, it is possible, for instance, to enlarge the region of admissible initial conditions or the maximum admissible disturbance energy. To illustrate the efficiency of our approach, we present numerical examples to compare with other methods from the literature.  相似文献   

18.
This paper investigates the problem of ?? filtering for discrete‐time linear systems with Markovian jumping parameters. It is assumed that the jumping parameter is available. This paper develops necessary and sufficient conditions for designing a discrete‐time Markovian jump linear filter which ensures a prescribed bound on the ?2‐induced gain from the noise signals to the estimation error. The proposed filter design is given in terms of linear matrix inequalities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
This paper studies stability of a general class of impulsive switched systems under time delays and random disturbances using multiple Lyapunov functions and fixed dwell‐time. In the studied system model, the impulses and switches are allowed to occur asynchronously. As a result, the switching may occur in the impulsive intervals and the impulses can occur in the switching intervals, which have great effects on system stability. Since the switches do not bring about the change of the system state, we study two cases in terms of the impulses, ie, the stable continuous dynamics case and the stable impulsive dynamics case. According to multiple Lyapunov‐Razumikhin functions and the fixed dwell‐time, Razumikhin‐type stability conditions are established. Finally, the obtained results are illustrated via a numerical example from the synchronization problem of chaotic systems.  相似文献   

20.
A stability robustness test is developed for internally stable, nominal, linear time‐invariant (LTI) feedback systems subject to structured, linear time‐varying uncertainty. There exists (in the literature) a necessary and sufficient structured small gain condition that determines robust stability in such cases. In this paper, the structured small gain theorem is utilized to formulate a (sufficient) stability robustness condition in a scaled LTI ν‐gap metric framework. The scaled LTI ν‐gap metric stability condition is shown to be computable via linear matrix inequality techniques, similar to the structured small gain condition. Apart from a comparison with a generalized robust stability margin as the final part of the stability test, however, the solution algorithm implemented to test the scaled LTI ν‐gap metric stability robustness condition is shown to be independent of knowledge about the controller transfer function (as opposed to the LMI feasibility problem associated with the scaled small gain condition which is dependent on knowledge about the controller). Thus, given a nominal plant and a structured uncertainty set, the stability robustness condition presented in this paper provides a single constraint on a controller (in terms of a large enough generalized robust stability margin) that (sufficiently) guarantees to stabilize all plants in the uncertainty set. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号