首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper considers robust stabilization of networked control systems (NCSs) with the problem of multiple packet transmission. Two parts of uncertainties are considered in this paper: norm‐bounded parameter uncertainties in the plant, and norm‐bounded parameter uncertainties in the controller. For sensor nodes and actuator nodes communicating through a limited communication channel, we are particularly interested in the case that only one packet containing part of the state information can be transmitted through a toking‐bus every time. Stability of the NCSs with multiple packet transmitted in a periodic manner is closely related to that of periodically switched systems. For NCSs with and without uncertainties in the plant and the controller, stabilizing state feedback controllers are constructed in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the feasibility and effectiveness of the proposed approach.  相似文献   

2.
This paper is concerned with the problem of H output tracking control for networked control systems (NCSs) with network‐induced delay and packet disordering. Different from the results in existing literature, the controller design in this paper is both delay‐ and packet‐disordering‐dependent. Based on the different cases of consecutive predictions, the networked output tracking system is modeled into a switched system. Moreover, by the corresponding switching‐based Lyapunov functional approach, a linear matrix inequality (LMI)‐based procedure is proposed for designing state‐feedback controllers, which guarantees that the output of the closed‐loop NCSs tracks the output of a given reference model well in the H sense. In addition, the proposed method can be applied variously due to all kinds of prediction numbers of the consecutive disordering packet have been considered, and the designed controller is based on the prediction case in the last transmission interval, which brings about less conservatism. Finally numerical examples and simulations are used to illustrate the effectiveness and validity of the proposed switching‐based method and the delay‐ and packet‐disordering‐dependent H output tracking controller design.  相似文献   

3.
In this paper, the stabilization problem and controller design of model‐based networked control systems (MB‐NCSs) with both arbitrary and Markovian packet dropouts are discussed via the switched system approach. Different from the common way of using the last successfully transmitted information, the approximate state produced by the explicit plant model is applied to deal with the packet loss problem in our method. Based on the Lyapunov functional methodology and inequality techniques, some sufficient stabilization conditions are derived and stabilizing state feedback controllers are constructed. Moreover, by using the cone complementary linearation (CCL) method, a non‐linear minimization problem subject to some linear matrix inequalities (LMIs) is provided here to help find a sub‐optimal solution. Numerical examples and accompanying simulations illustrate the effectiveness and validity of our techniques, and also evidence of improvements over the existing literature.  相似文献   

4.
This paper is concerned with overlapping group mode‐dependent H control for a discrete‐time Markovian jump linear system, where global modes of the system are not completely available for controller design. Firstly, a randomly overlapping decomposition method is developed to reformulate the system by a set of locally overlapping switched groups with accessible group modes. The reformulated system switches among different group modes in an overlapping manner. Secondly, an overlapping group mode‐dependent state feedback controller is delicately constructed. Compared with some existing mode‐dependent controllers in the literature, the proposed controller has three features: (i) it does not require all exact knowledge of global modes; (ii) it takes full advantage of group mode information of the reformulated system; and (iii) it allows overlapping local modes to exist in the formed groups. Thirdly, sufficient conditions on the existence of a desired overlapping group mode‐dependent state feedback controller are derived such that the resultant closed‐loop system is stochastically stable with prescribed H performance. Furthermore, the proposed method is extended to design overlapping group mode‐dependent state feedback controllers subject to incomplete mode transition probabilities. The proposed overlapping group mode‐dependent framework is shown to be more general and includes traditional Markovian jump linear systems with completely accessible global modes as its special case. In the case of only one group in the reformulated system, it is shown that some existing result in existing literature can be retrieved. Finally, two illustrative examples are given to show the effectiveness of the obtained theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper deals with the issue of reliable control for discrete‐time switched linear systems with faulty actuators by utilizing a multiple Lyapunov functions method and estimate state‐dependent switching technique. A solvability condition for the reliable control problem is given in terms of matrix inequality with an extra matrix variable. This condition allows the reliable control problem for each individual subsystem to be unsolvable. For each subsystem of such a switched system, we design an observer and an observer‐based controller. A switching rule depending on the observer state is designed which, together with the controllers, can guarantee the stability of the closed‐loop switched system for all admissible actuator failures. The observers, controllers, and switching law are explicitly computed by solving linear matrix inequalities (LMIs). The proposed design method is illustrated by two numerical examples.  相似文献   

6.
We study the problem of designing state‐feedback controllers to track time‐varying state trajectories that may exhibit jumps. Both plants and controllers considered are modeled as hybrid dynamical systems, which are systems with both continuous and discrete dynamics, given in terms of a flow set, a flow map, a jump set, and a jump map. Using recently developed tools for the study of stability in hybrid systems, we recast the tracking problem as the task of asymptotically stabilizing a set, the tracking set, and derive conditions for the design of state‐feedback tracking controllers with the property that the jump times of the plant coincide with those of the given reference trajectories. The resulting tracking controllers guarantee that solutions of the plant starting close to the reference trajectory stay close to it and that the difference between each solution of the controlled plant and the reference trajectory converges to zero asymptotically. Constructive conditions for tracking control design in terms of LMIs are proposed for a class of hybrid systems with linear maps and input‐triggered jumps. The results are illustrated by various examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This article investigates the event‐triggered finite‐time reliable control problem for a class of Markovian jump systems with time‐varying transition probabilities, time‐varying actuator faults, and time‐varying delays. First, a Luenberger observer is constructed to estimate the unmeasured system state. Second, by applying an event‐triggered strategy from observer to controller, the frequency of transmission is reduced. Third, based on linear matrix inequality technique and stochastic finite‐time analysis, event‐triggered observer‐based controllers are designed and sufficient conditions are given, which ensure the finite‐time boundedness of the closed‐loop system in an H sense. Finally, an example is utilized to show the effectiveness of the proposed controller design approach.  相似文献   

8.
This paper investigates the non‐fragile robust control problem for a class of nonlinear networked control systems (NCSs) with long time‐varying delay. Both the uncertain nonlinearity and the controller gain fluctuation enter into the system in random ways, and such randomly occurring nonlinearity and randomly occurring controller gain fluctuation obey certain mutually uncorrelated Bernoulli distributed white noise sequences. A new time‐varying discrete time system model is proposed to describe the NCS. To reduce conservatism arising from modeling time‐varying parts, the time‐varying parts due to the time‐varying delay are treated as a norm‐bounded uncertainty with one nominal point using robust control techniques. Based on the obtained uncertain system model, a regular and an optimal sufficient non‐fragile controllers are derived by applying the Lyapunov stability theory and the linear matrix inequality technique, which render the closed‐loop NCS to be asymptotically stable and guarantee an upper bound of the given performance cost for all admissible uncertainties. Moreover, the existence condition and design method for the non‐fragile stabilizing controllers are also presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
This paper studies the control problem for discrete‐time singular Markovian jump systems with repeated vector nonlinearities. Sufficient conditions for stochastic stability are established, where the uniqueness of solution to the underlying system is also guaranteed. Then, a series of formulations of stabilizing conditions is further developed to design mode‐dependent and mode‐independent controllers by using the linear matrix inequality approach. Based on the proposed results, more special cases for stabilizing controller are considered. Finally, numerical examples are used to demonstrate the effectiveness and superiority of the proposed methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the problem of quantized feedback control for networked control systems (NCSs) with time‐varying delays and time‐varying sampling intervals, wherein the physical plant is a continuous‐time, and the control input is a discrete‐time signal. By using an input delay approach and a sector bound method, the network induced delays, the signal quantization and sampling intervals are presented in one framework in the case of the state and the control input by quantization in a logarithmic form. We exploit a novel Lyapunov functional with discontinuity, taking full advantage of the NCS characteristic information including the bounds of delays, the bounds of sampling intervals and quantization parameters. In addition, it has been shown that the Lyapunov functional is decreased at the jump instants. Furthermore, we use the Leibniz‐Newton formula and free‐weighting matrix method to obtain the stability analysis and stabilization conditions which are dependent on the NCS characteristic information. The proposed stability analysis and stabilizing controller design conditions can be presented in term of linear matrix inequalities, which have less conservativeness and less computational complexity. Four examples demonstrate the effectiveness of the proposed methods.  相似文献   

12.
The guaranteed cost control problem for discrete‐time singular Markov jump systems with parameter uncertainties is discussed. The weighting matrix in quadratic cost function is indefinite. For full and partial knowledge of transition probabilities cases, state feedback controllers are designed based on linear matrix inequalities method which guarantee that the closed‐loop discrete‐time singular Markov jump systems are regular, causal and robust stochastically stable, and the cost value has a zero lower bound and a finite upper bound. A numerical example to illustrate the effectiveness of the method is given in the paper. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the stabilization problem for a class of switched linear parameter‐varying (LPV) systems with Markovian jump parameters whose transition rate is completely unknown, or only its estimated value is known. Firstly, a new criterion for testing the stochastic stability of such systems is established. Then, using the multiple parameter‐dependent Lyapunov function method, we design a parameter‐dependent state‐feedback controller for individual switched LPV subsystem to guarantee stochastic stability of the closed‐loop switched LPV systems with Markovian jump parameters under uncertain transition rates. Finally, as an application of the proposed design method, the stabilization problem of a turbofan‐engine which cannot be handled by the existing methods is investigated.  相似文献   

14.
This paper considers the stabilization problem for a class of switched systems with state constraints based on mode‐dependent average dwell time (MDADT) in discrete‐time context. An improved average dwell time method is proposed, which is less conservative than the common average dwell time method. The sufficient conditions and stabilizing state feedback controllers for stabilization of discrete‐time switched systems with state constraints under MDADT switching are derived. Finally, the simulation results show that the approach designed by this paper is effective.  相似文献   

15.
This paper is concerned with the H control problem for networked control systems (NCSs) with random packet dropouts. The NCS is modeled as a sampled‐data system which involves a continuous plant, a digital controller, an event‐driven holder and network channels. In this model, two types of packet dropouts in the sensor‐to‐controller (S/C) side and controller‐to‐actuator (C/A) side are both considered, and are described by two mutually independent stochastic variables satisfying the Bernoulli binary distribution. By applying an input/output delay approach, the sampled‐data NCS is transformed into a continuous time‐delay system with stochastic parameters. An observer‐based control scheme is designed such that the closed‐loop NCS is stochastically exponentially mean‐square stable and the prescribed H disturbance attenuation level is also achieved. The controller design problem is transformed into a feasibility problem for a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed design method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

16.
This paper presents a robust control approach to solve the stability and stabilization problems for networked control systems (NCSs) with short time‐varying delays. A new discrete‐time linear uncertain system model is proposed to describe the NCS, and the uncertainty of the network‐induced delay is transformed into the uncertainty of the system matrix. Based on the obtained uncertain system model, a sufficient BIBO stability condition for the closed‐loop NCS is derived by applying the small gain theorem. The obtained stability condition establishes a quantitative relation between the BIBO stability of the closed‐loop NCS and two delay parameters, namely, the delay upper bound and the delay variation range bound. Moreover, design procedures for the state feedback stabilizing controllers are also presented. An illustrative example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the problem of static anti‐windup design for uncertain continuous‐time Markovian jump systems with partially unknown transition rates in the face of actuator saturation. The underlying system is subject to time‐varying and norm‐bounded parameter uncertainties in both the state and input matrices. It is assumed that a set of stabilizing dynamic output‐feedback controllers have been designed for the system in the absence of control saturation. The objective is to design anti‐windup compensation gains for the given controllers such that the system can still be stabilized, irrespective of whether actuator saturation appears or not. To obtain a maximum estimation of the domain of attraction of the resulting closed‐loop system, a convex optimization problem in the linear matrix inequality framework is formulated. Furthermore, the results are extended to the cases of the systems with completely known transition rates and with completely unknown transition rates. Finally, the usefulness of the developed method is demonstrated through simulation examples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
一类离散时间切换混杂系统鲁棒控制   总被引:3,自引:2,他引:1  
由于切换规则的存在使得切换混杂控制系统的稳定性研究变得极为复杂,如何针对给定的系统设计适当的控制器和切换规则没有统一的方法.本文考虑一类线性不确定离散时间切换混杂系统的鲁棒二次镇定和渐近镇定问题.利用公共李雅普诺夫函数方法和多李雅普诺夫函数方法,分别设计了切换混杂系统鲁棒状态反馈控制器和鲁棒输出反馈控制器,保证了切换混杂系统的二次稳定性和渐近稳定性.仿真结果验证了所提算法的正确有效性.  相似文献   

19.
Wen-An Zhang 《Automatica》2009,45(10):2440-2445
The stabilization problem is studied for networked control systems (NCSs) with time-varying delay that may be larger than one sampling period. By considering state feedback controllers, the closed-loop NCS is described as a switched delay system, which is then represented as an interconnected feedback system. A sufficient BIBO stability condition is derived for the closed-loop NCS by using the small gain theorem and the average dwell time technique. Design procedures for the BIBO stabilizing controllers are also presented. An example is given to demonstrate the effectiveness of the proposed method.  相似文献   

20.
This paper considers the problem of observer‐based H controller design for a class of discrete‐time nonhomogeneous Markov jump systems with nonlinear input. Actuator saturation is considered to be a nonlinear input of such system and the time‐varying transition probability matrix in the system is described as a polytope set. Furthermore, a mode‐dependent and parameter‐dependent Lyapunov function is investigated, and a sufficient condition is derived to design observer‐based controllers such that the resulting error dynamical system is stochastically stable and a prescribed H performance is achieved. Finally, estimation of attraction domain of such nonhomogeneous Markov jump systems is also made. A simulation example shows the effectiveness of developed techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号