首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diesel particulate filter (DPF) is used to remove particulate matter (PM) from the diesel engine exhaust. The accumulated PM is periodically removed by combustion, which sometimes leads to excessive temperature excursions that melt the ceramic filter. This behavior cannot be explained by operation under stationary feed conditions. We propose that these temperature excursions are a dynamic effect following a rapid change in the driving mode while the DPF is being regenerated. Specifically, a rapid decrease in the exhaust temperature can lead to a counterintuitive large transient temperature rise above that which would exist under a higher stationary feed temperature. This unexpected behavior is similar to the well‐known wrong‐way behavior in packed‐bed reactors, even though the axial‐dependent flow through the filter in a DPF is rather different from the constant axial flow through a packed bed. We present simulations that provide insight about the dependence of the amplitude of this wrong‐way temperature rise on the filtration velocity, the PM loading, dimensions of the DPF, and the amplitude of the rapid temperature decrease and when it occurs after the start of the regeneration. The insight provided by these simulations will help develop operation and control protocols that circumvent or at least decrease the probability of the occurrence of the destructive melting of the DPF. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

2.
Infra-red measuremnts of the combustion of particular matter (PM) deposited on the surface of a single layer diesel particulate filter (DPF) showed that it may proceed in three different modes: either by a moving hot zone emanating from a single ignition point, or hot zones generated at several different ignition points or uniform combustion all over the surface. The velocity of the downwards moving temperature front exceeds that of the upstream front bounding the hot zone. The number of ignition points increases as the PM loading is decreased. The highest temperature rise is obtained by a downward moving hot zone. Avoiding this mode of combustion decreases the probability of excessive hot zone formation during the PM regeneration.  相似文献   

3.
The numerous benefits offered by diesel engines, compared to gasoline ones, are balanced by a drawback of increasing concern, namely soot emissions. Nowadays, soot emissions can be reduced by physically trapping the particles within on-board diesel particulate filters (DPF). The filter gets progressively loaded by filtering the soot laden flue gases, thus causing an increasing pressure drop, until regeneration takes place. The aim of this work is to develop a fully predictive three-dimensional mathematical model able to accurately describe the soot deposition process into the filter, the consequent gradual modification of the properties of the filter itself (i.e. permeability and porosity), the formation of a soot filtration cake, and the final regeneration step. The commercial computational fluid dynamics (CFD) code Fluent 6.2.16, based on a finite-volume numerical scheme, is used to simulate the gas and particulate flow fields in the DPF, whereas particle filtration sub-models and regeneration kinetics are implemented through user-defined-subroutines (UDS).Model predictions highlight uneven soot deposition profiles in the first steps of the filtration process; however, the very high resistance to the gas flow of the readily formed cake layer determines the evolution into an almost constant layer of soot particles. The ignition of the loaded soot was simulated under different operating conditions, and two regeneration strategies were investigated: a “mild regeneration” at low temperature and oxygen concentration, that operated a spatially homogeneous ignition of the deposited soot, and a “fast regeneration”, with an uneven soot combustion along the axial coordinate of the filter, due to strong temperature gradients inside the filter itself. These findings are supported by comparison and validation with experimental data.  相似文献   

4.
Based on models A, B, and C of three kinds of diesel particulate filter (DPF) with microwave regeneration, a DPF microwave regeneration model is established according to the laws of conservation of mass, momentum, and energy. The trends of internal temperature under different velocities of exhaust gas in channels are simulated and analyzed. The results show that: (1) Regeneration temperature in the process of microwave regeneration will begin to increase from the front to the rear end of along the axial direction, and the maximum temperature value will appear in the rear end of the monolith. (2) The internal flow velocity in the DPF of model C is the most uniform and the temperature gradient is the smallest among the three models. Therefore, it is the most useful for DPF regeneration. (3) The minimal thermal stress is exerted on the DPF of model C. Therefore, this model is most useful for prolonging the service life of a DPF.  相似文献   

5.
Because the regulations governing diesel engine emissions are becoming more stringent, effective aftertreatment is needed for particulate matter. Although diesel particulate filters (DPFs) are a leading technology used in automobiles, there remains a problem with DPF regeneration for marine diesel engines that use heavy oil fuel. In the present study, pilot-scale experiments were conducted to develop a particulate oxidation technology for marine diesel engine emissions using DPF regeneration by nonthermal-plasma-induced ozone injection. It has been shown that particulate oxidation depends on the exhaust gas temperature, and regeneration can be performed most effectively at a temperature of approximately 300 °C.  相似文献   

6.
A 1% Pt on CeO2-promoted PrCrO3 perovskite catalyst has been synthesized over a wall-flow monolith by the in situ solution combustion synthesis (SCS) method. The role of the catalyst, highly active towards diesel particulate combustion, has been studied during the regeneration phase as a function of three different operating parameters: the inlet trap temperature at which the regeneration is induced, the residual oxygen concentration in the exhaust gases and the load of particulate at the start of the regeneration. The final aim of this study is to improve the knowledge on the catalytic regeneration process in order to derive information suitable for designing an optimized catalytic soot trap entailing minimal fuel penalties.  相似文献   

7.
《Ceramics International》2021,47(24):34828-34835
In this paper, potassium titanate whiskers was prepared via the Molten salt synthesis on the surface of cordierite ceramics for the regeneration of diesel particulate filters (DPFs). SEM, EDS, XRD, FT-IR, TG-DSC and TPO were carried out to characterize the morphology, microstructure, growth mechanism and catalytic performance of the samples. Potassium titanate whiskers with diameter (100–500 nm) and length (about 3 μm) is tightly combined with the cordierite ceramic substrate. The catalyst performance investigation demonstrates that potassium titanate whiskers decrease the soot combustion temperature apparently. The soot combustion process was studied by thermal analysis tests, and the activation energy of the combustion reaction can be calculated using Freeman-Carroll method. The carbon oxidation activation energy is 14.009 kcal/mol, and the activation energy for the catalytic reaction with potassium titanate whiskers is 6.287 kcal/mol, it can be illustrated that potassium titanate whiskers/cordierite catalyst possess excellence performance for carbon catalytic combustion. The coarseness of the interface increased because potassium titanate whiskers grew on the cordierite substrate, and the trapping ability could improve. This unique microstructure has potential application in the DPF field.  相似文献   

8.
Temperature gradients within a soot layer during DPF regeneration   总被引:3,自引:0,他引:3  
Many mathematical models have been developed for predicting the temperature rise during the regeneration of diesel particulate filters (DPFs). This requires assuming the magnitude of the temperature gradient normal to the flow in the inlet channels in the soot layer. We report here the first experimental measurement of this value. The experiments revealed that the maximum soot layer temperature occurred at the gas–soot interface. At soot loading of 10 g/L or less the temperature differences across the soot layer are rather small (usually less than 10 °C). Higher values may be obtained at higher soot loading. For example, a 40 °C difference was observed at a loading of 20 g/L. A surprising finding was that the amplitude of the temperature difference decreased with the increase in feed oxygen concentration.  相似文献   

9.
The active phase Ce0.5Pr0.5O2 has been loaded on commercial substrates (SiC DPF and cordierite honeycomb monolith) to perform DPF regeneration experiments in the exhaust of a diesel engine. Also, a powder sample has been prepared to carry out soot combustion experiments at laboratory. Experiments performed in the real diesel exhaust demonstrated the catalytic activity of the Ce–Pr mixed oxide for the combustion of soot, lowering the DPF regeneration temperature with regard to a counterpart catalyst-free DPF. The temperature for active regeneration of the Ce0.5Pr0.5O2-containing DPF when the soot content is low is in the range of 500–550 °C. When the Ce0.5Pr0.5O2-containing DPF is saturated with a high amount of soot, pressure drop and soot load at the filter reach equilibrium at around 360 °C under steady state engine operation due to passive regeneration. The uncoated DPF reached this equilibrium at around 440 °C. Comparing results at real exhaust with those at laboratory allow concluding that the Ce0.5Pr0.5O2-catalysed soot combustion in the real exhaust is not based on the NO2-assisted mechanism but is most likely occurring by the active oxygen-based mechanism.  相似文献   

10.
In recent years advanced computational tools of diesel particulate filter (DPF) regeneration have been developed to assist in the systematic and cost-effective optimization of next generation particulate trap systems.In the present study, we employ a previously validated, state-of-the-art multichannel DPF simulator to study the regeneration process over the entire spatial domain of the filter. Particular attention is placed on identifying the effect of inlet cones and boundary conditions, filter can insulation and the dynamics of “hot spots” induced by localized external energy deposition. Lateral heat losses through the insulation and the periphery of the filter can, as captured by the magnitude of the Nusselt number, Nu, are detrimental to the effectiveness of the regeneration process. A filter can Nu number less than 10 and preferably less than 5 is a good design target for high regeneration efficiency. For the case studied, insulation of the inlet cones can lead to a gain of 30% in regeneration efficiency by eliminating radial temperature gradients at the inlet filter face. The multichannel simulator provides an instructive illustration of the well-appreciated effects of localized hot spot on filter regeneration: hot spots play a more significant role (spread over) when located near the entrance of the filter.  相似文献   

11.
本研究对梭式窑中二甲醚的富氧燃烧进行研究初探。结果表明,虽然二甲醚热值比液化气低,但由于二甲醚自身含氧,在燃烧过程中所需空气远低于液化气,因此二甲醚理论燃烧温度高于液化石油气。当二甲醚采用富氧燃烧后,火焰温度急速上升,富氧浓度可降低。当氧体积分数为27%~29%时,二甲醚烧成节能效果最佳。通过富氧燃烧帮助解决二甲醚燃烧过程中有机污染物的问题,有利于二甲醚在陶瓷工业的应用,并对二甲醚富氧燃烧技术在陶瓷窑炉的应用进行经济效益分析。  相似文献   

12.
In this study, the thermogravimetric analysis(TGA) method has been used to evaluate the kinetic behavior of biomass, coal and its blends during oxyfuel co-combustion. The thermogravimetric results have been evaluated by the Coats–Redfern method and validated by Criado's method. TG and DTG curves indicate that as the oxygen concentration increases the ignition and burn out temperatures approach a lower temperature region. The combustion characteristic index shows that biomass to coal blends of 28% and 40% respectively can achieve enhanced combustion up to 60% oxygen enrichment. In the devolatilization region, the activation energies for coal and blends reduce while in the char oxidation region, they increase with rise in oxygen concentration. Biomass, however, indicates slightly different combustion characteristic of being degraded in a single step and its activation energies increase with rise in oxygen concentration. It is demonstrated in this work that oxygen enrichment has more positive combustion effect on coal than biomass. At 20% oxygen enrichment, 28% and 40% blends indicate activation energy of 132.8 and 125.5 kJ·mol~(-1) respectively which are lower than coal at 148.1 kJ·mol~(-1) but higher than biomass at 81.5 kJ·mol~(-1) demonstrating synergistic effect of fuel blending. Also, at char combustion step, an increase in activation energy for 28% blend is found to be 0.36 kJ·mol~(-1) per rise in oxygen concentration which is higher than in 40% blend at 0.28 kJ·mol~(-1).  相似文献   

13.
Obuchi  Akira  Uchisawa  Junko  Ohi  Akihiko  Nanba  Tetsuya  Nakayama  Norio 《Topics in Catalysis》2007,42(1-4):267-271
Based on a folded sheet design, we made and tested a miniature diesel particulate filter (DPF) that can transfer the heat generated by catalytic oxidation in the DPF to its upstream, thus promoting substantial temperature rise at the position where pieces of SiC felt working as PM filters are situated. When 0.6% of H2, corresponding to 50 K in adiabatic temperature rise, was added to a 43 L/min of exhaust gas, the observed maximum temperature rise at the filter material exceeded 350 K, from which the heat recovery rate was estimated to be more than 86%. The PM filtration rates were 80–90%.  相似文献   

14.
The silicon carbide used to make diesel particulate filters (SiC-DPF) has a maximum temperature of use, which is not the melting point of the filter material itself but rather the eutectic melting points of the ash materials and alkali metals deposited on the filter wall. Chemical reactions between the SiC filter and the other materials, i.e. ash materials and/or alkali metals, decrease the filtration efficiency and catalytic reactivity of engine out emission. The objective of this study is to understand the effect of hydrothermal aging on the SiC-DPF, and on the SiC-CDPF (catalyzed diesel particulate filter) deposited with ash materials and/or alkali metals. Hydrothermal aging simulated for the extreme condition of uncontrolled regeneration in DPF is carried out by using H2O at high temperature. The surface change of the SiC filter was characterized in terms of the geometric microstructure and metal composites of the filter by using the SEM-EDS, BET and XRD. The accumulated ash materials and alkali metals in the SiC-DPF were an admixture, and the SiC-DPF after-treatment system always contained H2O. According to the results, H2O in the after-treatment system can be regarded as an influential factor of SiC-DPF durability even though the SiC itself has a very high melting point. The regeneration temperature has to be controlled under a critical value to ensure the durability of SiC-DPF in the after-treatment system, considering the fact that large quantities of ash materials, alkali metals and H2O components are included in the exhaust gas.  相似文献   

15.
研究了气源温度和解吸条件对制氧效果的影响,结果表明:细长解吸管路会导致吸附塔内氧浓度波前沿在吸附周期内极易穿透床层,在产氧期及间歇期都会有低浓度氧流入储氧罐,造成氧浓度和流量下降;较高的气源温度有利于分子筛解吸再生,在15~65 ℃内,平均每升高10 ℃,产氧体积分数可以提高1.2%。  相似文献   

16.
燃烧动力学是研究油页岩半焦颗粒燃烧特性的基础。利用热重分析仪对油页岩半焦进行了恒温燃烧实验研究,在排除外扩散影响的基础上,分析了燃烧温度、氧气浓度对油页岩半焦燃烧过程的影响。在实验范围内,氧气浓度和燃烧温度均能对油页岩半焦燃烧速率产生重要影响,更高的氧气浓度和燃烧温度可以加快油页岩半焦燃烧速率。结合实验结果,建立了考虑氧气浓度影响的油页岩半焦燃烧动力学模型,发现油页岩半焦燃烧速率与氧气浓度的0.97次方呈线性关系。模型计算结果与实验结果符合较好,为进一步研究油页岩半焦大颗粒燃烧特性提供了燃烧动力学基础。  相似文献   

17.
The loading of a diesel particulate filters (DPFs) entails the need of trap regeneration by particulate combustion, whose efficiency and frequency are somehow affected by the way soot is deposited along the channels. Great efforts are thus spent to improve the understanding of the filtration process of DPFs, aimed at obtaining a deeper insight into the relationship between engine performance and filter loading so as to take advantage of this insight for DPF design and optimization purposes. Small lab-scale 300 cpsi DPF samples were loaded downstream the Diesel oxidation catalyst (DOC) in an ad hoc designed reactor capable of hosting five samples with part of the entire flow produced by an automotive diesel engine at the 2500 × 8 BMEP operating condition, selected to be representative as one of the critical engine points of the New European Driving Cycle (NEDC). Soot layer thickness was estimated by means of Field emission scanning electron microscope (FESEM) observations after sample sectioning at progressive locations, obtained through a procedure defined not to affect the distribution of the soot inside the filter and to enable estimation of the actual soot thickness along the channel length. This is a pre-requisite to get suitable data for the validation of the DPF models required for trap design and optimisation.  相似文献   

18.
Ceramic Diesel Particulate Filters   总被引:2,自引:0,他引:2  
Twenty-five years of diesel particulate filter (DPF) developments have shown that ceramic materials are well-suited candidates to fulfill the harsh requirements of exhaust after treatment. The introduction of DPF in passenger cars in Europe in 2000 was a real breakthrough from both a scientific and a commercial point of view. Different systems and filter materials can be used as DPF; however, at the moment silicon carbide wall flow filters seem to be at advantage. There is a continual demand for cost-effective and reliable materials and systems forced by increasing legal emission standards.  相似文献   

19.
负载型La-K-Cu-Mn-O催化剂同时去除颗粒物和NOx性能   总被引:1,自引:1,他引:0  
通过在柴油机排放颗粒物过滤器上负载La0.8K0.2Cu0.05Mn0.95O3复合金属氧化物催化剂并进行实际柴油机尾气挂烟,利用程序升温反应技术,对同时催化去除柴油机颗粒物和氮氧化物反应进行了实验研究。研究结果表明,空白载体上实际柴油机排放颗粒物燃烧生成的CO2曲线呈双峰,分别对应于可溶性有机物和干碳烟的燃烧。负载型催化剂能有效降低可溶性有机物和干碳烟的燃烧温度,促进NO向N2转化。与淤浆法相比,浸渍法负载的催化剂效果更好,浸渍法负载催化剂可以将起燃温度降至160 ℃,最高的NOx向N2转化率达63.4%。  相似文献   

20.
The California Air Resources Board (CARB) and the Joint Research Center of the European Commission (JRC) have collaborated on emissions testing of a light duty diesel vehicle, which is Euro 4 compliant and comes equipped with a diesel particulate filter (DPF). The California testing included an investigation of the regeneration of the DPF over cruise conditions and NEDC test cycles. DPF regeneration is caused by the buildup of soot in the filter, and for the present test vehicle the regeneration process is assisted by a fuel borne catalyst. Regulated exhaust emissions increased substantially during the regeneration events; however, PM emissions levels were below California LEVII emissions standards. There was a very large increase of volatile particles between 5 and 10 nm, and these volatile particles were generated during all of the observed regeneration events. It appears that the particle number instruments that use the PMP methodology do not capture the PM mass increase during DPF regeneration; however, for one regeneration event there was an apparent large increase in solid particles below the PMP size limit. The PM mass increase associated with regeneration appears to be due to semi-volatile particles collected on filters. During the testing, the regeneration events exhibited considerable variations in the time for regeneration as well as the amount of PM emissions. From this investigation, several questions have been posed concerning the emission of very small (<20 nm) volatile and solid particles during DPF regeneration that need further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号