首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为一种新型的纳米器件,量子元胞自动机(Quantum-dot cellular automata,QCA)有望取代传统CMOS器件.本文总结了目前已提出的三种全加器(Full Adder,FA)架构,通过概率转移矩阵(Probabilistic Transfer Matrix,PTM)分析找出其中最稳定的架构,进一步地,利用这三种全加器分别构建串行加法器,并从复杂度、不可逆功耗、成本等方面进行比较,结果发现性能最优的全加器架构为MR Azghadi FA.随后,选择该架构提出了一种针对全加器的新型逻辑门和共面QCA全加器电路,并应用此全加器设计了多位串行加法器,经对比分析表明,本文所提出的全加器电路在面积、元胞数和功耗等方面均有较大改进,且具有很好的扩展性.  相似文献   

2.
The large amount of secondary effects in complementary metal–oxide–semiconductor technology limits its application in the ultra-nanoscale region. Circuit designers explore a new technology for the ultra-nanoscale region, which is the quantum-dot cellular automata (QCA). Low-energy dissipation, high speed, and area efficiency are the key features of the QCA technology. This research proposes a novel, low-complexity, QCA-based one-bit digital comparator circuit for the ultra-nanoscale region. The performance of the proposed comparator circuit is presented in detail in this paper and compared with that of existing designs. The proposed QCA structure for the comparator circuit only consists of 19 QCA cells with two clock phases. QCA Designer-E and QCA Pro tools are applied to estimate the total energy dissipation. The proposed comparator saves 24.00% QCA cells, 25.00% cell area, 37.50% layout cost, and 78.11% energy dissipation compared with the best reported similar design.  相似文献   

3.
《Microelectronics Journal》2015,46(6):531-542
Quantum-dot cellular automata (QCA) has been studied extensively as a promising switching technology at nanoscale level. Despite several potential advantages of QCA-based designs over conventional CMOS logic, some deposition defects are probable to occur in QCA-based systems which have necessitated fault-tolerant structures. Whereas binary adders are among the most frequently-used components in digital systems, this work targets designing a highly-optimized robust full adder in a QCA framework. Results demonstrate the superiority of the proposed full adder in terms of latency, complexity and area with respect to previous full adder designs. Further, the functionality and the defect tolerance of the proposed full adder in the presence of QCA deposition faults are studied. The functionality and correctness of our design is confirmed using high-level synthesis, which is followed by delineating its normal and faulty behavior using a Probabilistic Transfer Matrix (PTM) method. The related waveforms which verify the robustness of the proposed designs are discussed via generation using the QCADesigner simulation tool.  相似文献   

4.
This paper proposes a novel design paradigm for circuits designed in quantum dot cellular automata (QCA) technology. Previously reported QCA circuits in the literature have generally been designed in a single layer which is the main logical block in which the inverter and majority gate are on the base layer, except for the parts where multilayer wire crossing was used. In this paper the concept of multilayer wire crossing has been extended to design logic gates in multilayers. Using a 5-input majority gate in a multilayer, a 1-bit and 2-bit adder have been designed in the proposed multilayer gate design paradigm. A comparison has been made with some adders reported previously in the literature and it has been shown that circuits designed in the proposed design paradigm are much more efficient in terms of area, the requirement of QCA cells in the design and the input-output delay of the circuit. Over all, the availability of one additional spatial dimension makes the design process much more flexible and there is scope for the customizability of logic gate designs to make the circuit compact.  相似文献   

5.
This paper presents a novel low power and high speed 4-bit comparator extendable to 64-bits using floating-gate MOSFET (FGMOS). Here, we have exploited the unique feature of FGMOS wherein the effective voltage at its floating-gate is the weighted sum of many input voltages which are capacitively coupled to the floating-gate. The performance of proposed 4-bit comparator circuit has been compared with other comparator circuits designed using CMOS, transmission gate (TG), pass transistor logic (PTL) and gate diffusion input (GDI) technique. The proposed FGMOS based 4-bit comparator have shown remarkable performance in terms of transistor count, speed, power dissipation and power delay product besides full swing at the output in comparison to the existing comparator designs available in literature. Thus the proposed circuit can be viable option for high speed and low power applications. The performance of the proposed FGMOS based 4-bit comparator has been verified through OrCAD PSpice simulations through circuit file/schematics using level 7 parameters obtained from TSMC in 0.13 μm technology with the supply voltage of 1 V.  相似文献   

6.
To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor (CMOS) technology developers. The scaling scenario is not an option nowadays and other technologies need to be investigated. The quantum-dot cellular automata (QCA) technology is one of the important emerging nanotechnologies that have attracted much researchers’ attention in recent years. This technology has many interesting features, such as high speed, low power consumption, and small size. These features make it an appropriate alternative to the CMOS technique. This paper suggests three novel structures of XNOR gates in the QCA technology. The presented structures do not follow the conventional approaches to the logic gates design but depend on the inherent capabilities of the new technology. The proposed structures are used as the main building blocks for a single-bit comparator. The resulted circuits are simulated for the verification purpose and then compared with existing counterparts in the literature. The comparison results are encouraging to append the proposed structures to the library of QCA gates.  相似文献   

7.
Digital comparators are important arithmetic components used in digital systems to determine if two numbers are equal, or if one number is greater or less than the other. In this work, the design of magnitude and 2's complement comparators is examined. New OR-based full tree and simplified tree magnitude comparator architectures are proposed. The existing and the proposed comparator architectures are implemented in standard cell technology and evaluated, after extensive experimental analysis, in high performance and relaxed conditions. The proposed comparators operate faster than the existing ones, while operating at the same speed yield significant improvement in area complexity and power dissipation.  相似文献   

8.
Quantum-dot cellular automata (QCA) is increasingly valued by researchers because of its nanoscale size and very low power consumption.However,in the manufacture of nanoscale devices prone to various forms of defects,which will affect the subsequent circuits design.Therefore,fault-tolerant QCA architectures have become a new research direction.The purpose of this paper is to build a novel fault-tolerant three-input majority gate based on normal cells.Compared with the previous structures,the majority gate shows high fault tolerance under single-cell and double-cell omission defects.In order to examine the functionality of the proposed structure,some physical proofs under single cell missing defects are provided.Besides,two new fault-tolerant decoders are constructed based on the proposed majority gate.In order to fully demonstrate the performance of the proposed decoder,the previous decoders were thoroughly compared in terms of fault tolerance,area and delay.The result shows that the proposed design has a good fault tolerance characteristic,while the performance in other aspects is also quite good.  相似文献   

9.
贺莎  邹望辉 《电子测试》2020,(7):35-36,106
传统比较器在其输入电压过高或过低时,输入MOS对管将进入截止区,从而使电路无法正常工作。本设计采用轨到轨放大器技术,使比较器在输入电压满摆幅时都能正常工作,增加了输入电压的范围。本文基于0.18μm COMS工艺完成电路的设计,并使用Spectre进行电路仿真。结果表明,在电源电压为1.8V时,电路静态功耗为360μW,电压比较精度为80μV,时延为13.2ns。  相似文献   

10.
Quantum‐dot cellular automata (QCA) is one of the proposed nanotechnologies in the electronics industry, which offers a new construction for scheming digital circuits with less energy consumption on the nanoscale and possibly can be an appropriate replacement of complementary metal‐oxide semiconductor (CMOS) technology. Nanocommunication in QCA has attracted a wide range of researcher's attention. However, there is still a broad scope to design QCA‐based architecture for nanocommunication. The multiplexer is hugely used in the telecommunication system and transmits multiple data at the same time. Therefore, in this paper, a useful structure to implement a 2 to 1 multiplexer based on the novel XOR gate is presented and is used as a module to implement the 4 to 1 and 8 to 1 multiplexers. Simulations using QCADesigner tool are done to check the performance of the suggested designs. The 2 to 1, 4 to 1, and 8 to 1 QCA multiplexer structures utilize 22, 92, and 260 cells and consume 0.03, 0.12, and 0.40 μm2 of area, respectively. They have shown that the suggested designs have stable and applicable structures regarding area, cost, and complexity.  相似文献   

11.
In a modern high density VLSI design, with higher operating frequency and technology scaling, small critical charge in circuit nodes significantly increases susceptibility to radiation induced transient faults. In this paper, we propose a high efficiency hardened latch using the undesired delay of Schmitt trigger circuit and a special feedback loop to a comparator to build a low overhead time redundancy scheme. The proposed structure masks internal node transient faults also improves the recovery of the output node by transferring the faulty output in two different paths to the comparison circuit’s inputs. Experimental results, simulated in 45 nm CMOS technology, show an acceptable increase in the critical charge compared with the previous hardened latches, with a fair increase in power, delay and area. Monte Carlo simulations have also confirmed the proposed latch resistance to the process, voltage and temperature variations.  相似文献   

12.
《Microelectronics Journal》2007,38(4-5):525-537
This paper proposes a detailed design analysis of sequential circuits for quantum-dot cellular automata (QCA). This analysis encompasses flip-flop (FF) devices as well as circuits. Initially, a novel RS-type FF amenable to a QCA implementation is proposed. This FF extends a previous threshold-based configuration to QCA by taking into account the timing issues associated with the adiabatic switching of this technology. The characterization of a D-type FF as a device consisting of an embedded wire is also presented. Unique timing constraints in QCA sequential logic design are identified and investigated. An algorithm for assigning appropriate clocking zones to a QCA sequential circuit is proposed. A technique referred to as stretching is used in the algorithm to ensure timing and delay matching. This algorithm relies on a topological sorting and enumeration step to consistently traversing only once the edges of the graph representation of the QCA sequential circuit. Examples of QCA sequential circuits are provided.  相似文献   

13.
In this article, we proposed a high-speed, high fan-in dynamic CMOS comparator with low transistor count. Our approach is to construct the dynamic comparator based on the prior superiority of dynamic CMOS comparator and to further enhance its operating speed. Constructing the comparator with dynamic CMOS architecture, we can save 63.2% transistor count as compared with the conventional static CMOS design. The main contribution to accelerate the speed of dynamic comparator is to solve the problem of ‘weak 0’ existing in the PMOS of pull-down network. Instead, as an alternate to PMOS in the pull-down network, we use NMOS combined with an additional inverter in the front of the NMOS input gate. In this way, we can perform the same function as PMOS, but transmitting with both ‘good 1’ and ’good 0’. As a result, the proposed dynamic comparator can operate with lower propagation delay in the pull-down network. Finally, the proposed 64-bit dynamic comparator circuit can operate correctly under a clock frequency of 450 MHz with 0.18 µm technology while the prior circuit can only operate under 250 MHz at the same time.  相似文献   

14.
Power dissipation of future-integrated systems, consisting of a numberless of devices, is a challenge that cannot be easily solved by classical technologies. Quantum-dot Cellular Automata (QCA) is a Field-Coupled Nanotechnology (FCN) and a potential alternative to traditional CMOS technologies. It offers various features like extremely low-power dissipation, very high operating frequency and nanoscale feature size. This study presents a novel design of CORDIC circuit based on QCA technology. The proposed circuit is based on several proposed QCA sub-modules as adder and Flip-Flop. To design and verify the proposed architecture, QCADesigner tool is employed and power consumption is estimated using QCAPro software. The proposed QCA CORDIC achieves about 69% reduction in power and area compared to previous existing designs. The outcome of this work can open up a new window of opportunity for the design of the CORDIC module and can be used in low-power signal and image processing systems.  相似文献   

15.
An extensive literature exists on the mathematical characterization of reversible logic. However, the possible technological basis of this computing paradigm still remains unsolved. In this paper, quantum-dot cellular automata (QCA) is investigated for testable implementations of reversible logic. Two new reversible gates (referred to as QCA1 and QCA2) are proposed. These gates are compared (in terms of delay, area and logic synthesis) with other reversible gates (such as Toffoli and Fredkin) for QCA implementation. Due to the expected high error rates in nano-scale manufacturing, testing of nano devices, including QCA, has received considerable attention. The focus of this paper is on the testability of a one-dimensional array made of QCA reversible gates, because the bijective nature of reversible gates significantly facilitates testing of arrays. The investigation of testability relies on a fault model for molecular QCA that is based on a single missing/additional cell assumption. It is shown that C-testability of a 1D reversible QCA gate array can be guaranteed for single fault. Theory and circuit examples show that error masking can occur when multiple faults are considered.  相似文献   

16.

Recently, Quantum-dot Cellular Automata (QCA) has appeared as a noteworthy substitution to CMOS technology. It contains ultra-high-velocity, efficient energy, low area for design circuits, one potential computational fabric for Nano computing systems, and integration density. On the other hand, fault-tolerant circuits promise reliability circuits by computation redundancy cells. This work targets to form two designs of fault-tolerant 2:1 multiplexer in the QCA framework. This proposed QCA multiplexer designs use cell redundancy on the wire, NOT gates, and majority gates. The coplanar structures for the proposed 2:1 QCA fault-tolerant multiplexers are provided and operated based on cell interactions. Four types of faults, cell misalignment, cell missing, cell displacement, and extra cell, are essential in analyzing the fault attributes. The proposed fault-tolerant multiplexers can attain 100% fault-tolerance while extra cell deficiencies or single missing exist in the layout of the QCA. The simulation outcomes reached by the software, QCA Designer 2.0.3, approve that the suggested multiplexers work correctly and can be utilized in QCA technology as a high-performance schematization. The outcomes show that the proposed construct outperforms any prior schematization.

  相似文献   

17.
Daiguo Xu  Shiliu Xu  Xi Li  Jie Pu 《半导体学报》2017,38(4):045003-9
A 10-bit 110 MHz SAR ADC with asynchronous trimming is presented. In this paper, a high linearity sampling switch is used to produce a constant parasitical barrier capacitance which would not change with the range of input signals. As a result, the linearity of the SAR ADC will increase with high linearity sampled signals. Farther more, a high-speed and low-power dynamic comparator is proposed which would reduce the comparison time and save power consumption at the same time compared to existing technology. Additionally, the proposed comparator provides a better performance with the decreasing of power supply. Moreover, a highspeed successive approximation register is exhibited to speed up the conversion time and will reduce about 50% register delay. Lastly, an asynchronous trimming method is provided to make the capacitive-DAC settle up completely instead of using the redundant cycle which would prolong the whole conversion period. This SAR ADC is implemented in 65-nm CMOS technology the core occupies an active area of only 0.025 mm2 and consumes 1.8 mW. The SAR ADC achieves SFDR > 68 dB and SNDR > 57 dB, resulting in the FOM of 28 fJ/conversion-step. From the test results, the presented SAR ADC provides a better FOM compared to previous research and is suitable for a kind of ADC IP in the design SOC.  相似文献   

18.
Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Performance comparison with traditional CMOS and various pass-transistor logic design techniques is presented. The different methods are compared with respect to the layout area, number of devices, delay, and power dissipation. Issues like technology compatibility, top-down design, and precomputing synthesis are discussed, showing advantages and drawbacks of GDI compared to other methods. Several logic circuits have been implemented in various design styles. Their properties are discussed, simulation results are reported, and measurements of a test chip are presented.  相似文献   

19.
The advent of development of high-performance, low-power digital circuits is achieved by a suitable emerging nanodevice called quantum-dot cellular automata(QCA). Even though many efficient arithmetic circuits were designed using QCA, there is still a challenge to implement high-speed circuits in an optimized manner. Among these circuits, one of the essential structures is a parallel multi-digit decimal adder unit with significant speed which is very attractive for future environments. To achieve high speed, a new correction logic formulation method is proposed for single and multi-digit BCD adder. The proposed enhanced single-digit BCD adder(ESDBA) is 26% faster than the carry flow adder(CFA)-based BCD adder. The multi-digit operations are also performed using the proposed ESDBA, which is cascaded innovatively. The enhanced multi-digit BCD adder(EMDBA) performs two 4-digit and two 8-digit BCD addition 50% faster than the CFA-based BCD adder with the nominal overhead of the area. The EMDBA performs two 4-digit BCD addition 24% faster with 23% decrease in the area, similarly for 8-digit operation the EMDBA achieves 36% increase in speed with 21% less area compared to the existing carry look ahead(CLA)-based BCD adder design. The proposed multi-digit adder produces significantly less delay of(N-1)+3.5 clock cycles compared to the N*One digit BCD adder delay required by the conventional BCD adder method. It is observed that as per our knowledge this is the first innovative proposal for multi-digit BCD addition using QCA.  相似文献   

20.
李俊文  夏银水 《电子学报》2019,47(2):404-409
Majority门作为多数逻辑电路的基本逻辑单元,其性能直接影响整体电路的质量.使用量子元胞自动机(QCA)设计Majority门具有结构简单的优点.本文提出了一种三层电路实现五输入Majority门的设计,并以此设计了全加器,进一步应用于多位加法器和乘法器中,与已发表的电路设计比较表明,其版图使用面积和元胞数有明显的减少,加法器元胞数和面积改进最高可达43%和87.2%,乘法器元胞数和面积改进最高可达48.2%和100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号