首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of polyhedral oligomeric silsesquioxanes (POSS)‐containing conjugated polymer (CP) and the polymer loaded poly(lactic‐co‐glycolic‐acid) (PLGA) nanoparticles (NPs) with surface antibody functionalization for human epidermal growth factor receptor 2 (HER2)‐positive cancer cell detection are reported. Due to the steric hindrance of POSS, NPs prepared from POSS‐containing CP show improved photoluminescence quantum yield as compared to that for the corresponding linear CP encapsulated NPs. In addition, the amount of ‐NH2 groups on NP surface is well‐controlled by changing the molar ratio of poly(lactic‐co‐glycolic‐acid)‐b‐poly(ethylene glycol) (PLGA‐b‐PEG‐NH2) to PLGA‐OCH3 during NP formulation. Further conjugation of the NH2‐functionalized CP NPs with trastuzumab (Herceptin) yields NPs with fine‐tuned protein density. These NPs are able to discriminate SKBR‐3 breast cancer cells from MCF‐7 breast cancer cells and NIH/3T3 fibroblast cells both on substrate and in suspension by taking advantage of the specific binding affinity between trastuzumab and HER2 overexpressed in SKBR‐3 breast cancer cell membrane. The high quantum yield and fine‐tuned surface specific protein functionalization make the POSS‐containing CP loaded NPs a good candidate for targeted biological imaging and detection.  相似文献   

2.
A facile strategy is developed to synthesize dual‐modal fluorescent‐magnetic nanoparticles (NPs) with surface folic acid by co‐encapsulation of a far‐red/near‐infrared (FR/NIR)‐emissive conjugated polymer (PFVBT) and lipid‐coated iron oxides (IOs) into a mixture of poly(lactic‐co‐glycolic‐acid)‐poly(ethylene glycol)‐folate (PLGA‐PEG‐FOL) and PLGA. The obtained NPs exhibit superparamagnetic properties and high fluorescence, which indicates that the lipid coated on IOs is effective at separating the conjugated polymer from IOs to minimize fluorescence quenching. These NPs are spherical in shape with an average diameter of ≈180 nm in water, as determined by laser light scattering. In vitro studies reveal that these dual‐modal NPs can serve as an effective fluorescent probe to achieve targeted imaging of MCF‐7 breast cancer cells without obvious cytotoxicity. In vivo fluorescence and magnetic resonance imaging results suggest that the NPs are able to preferentially accumulate in tumor tissues to allow dual‐modal detection of tumors in a living body. This demonstrates the potential of conjugated polymer based dual‐modal nanoprobes for versatile in vitro and in vivo applications in future.  相似文献   

3.
A general strategy for the preparation of highly fluorescent poly(DL‐lactide‐co‐glycolide) (PLGA) nanoparticles (NPs) loaded with conjugated polymers (CPs) is reported. The process involves encapsulation of organic‐soluble CPs with PLGA using a modified solvent extraction/evaporation technique. The obtained NPs are stable in aqueous media with biocompatible and functionalizable surfaces. In addition, fluorescent properties of the CP‐loaded PLGA NPs (CPL NPs) could be fine‐tuned by loading different types of CPs into the PLGA matrix. Four types of CPL NPs are prepared with a volume‐average hydrodynamic diameter ranging from 243 to 272 nm. The application of CPL NPs for bio‐imaging is demonstrated through incubation with MCF‐7 breast cancer cells. Confocal laser scanning microscopy studies reveal that the CPL NPs are internalized in cytoplasm around the nuclei with intense fluorescence. After conjugation with folic acid, cellular uptake of the surface‐functionalized CPL NPs is greatly enhanced via receptor‐mediated endocytosis by MCF‐7 breast cancer cells, as compared to that for NIH/3T3 fibroblast cells, which indicates a selective targeting effect of the folate‐functionalized CPL NPs in cellular imaging. The merits of CPL NPs, such as low cytotoxicity, high fluorescence, good photostability, and feasible surface functionalization, will inspire extensive study of CPL NPs as a new generation of probes for specific biological imaging and detection.  相似文献   

4.
Novel paclitaxel‐loaded polymer nanoparticles were developed for circumventing multidrug resistance (MDR) of malignant cancerous diseases, which is an unsolved clinical problem in cancer chemotherapy. In many cases, MDR is due to the intrinsic or acquired expression of an efflux pump, the P‐170 glycoprotein (P‐gp). By encapsulating paclitaxel in a water‐soluble and biocompatible synthetic polyampholyte using a solid‐state reaction the highly water‐soluble paclitaxel‐loaded nanoparticles are formed. The resulting paclitaxel nanoparticles with an average diameter of 250 nm show a significant reversal of chemoresistance in the drug‐resistant variants (MCF7/ADR, MT3/ADR) by a factor of 100 or more. The novel paclitaxel nanoparticles enter MDR breast cancer cells by adsorptive endocytosis bypassing the P‐gp, preventing the efflux of paclitaxel and thus restoring the anti‐proliferative effect of paclitaxel.  相似文献   

5.
A biocompatible, caspase‐3‐responsive, and fluorescence‐quenching smart apoptosis nanoprobe based on a PEGylated nanogel that contains gold nanoparticles (GNPs) (fluorescence quenchers) in the cross‐linked polyamine gel core and fluorescein isothiocyanate (FITC)‐labeled DEVD peptides at the tethered PEG chain ends is prepared for monitoring the cancer response to therapy. FITC–DEVD–nanogel–GNP shows very little fluorescence in the absence of activated caspase‐3 (normal cells) through the fluorescence resonance energy transfer (FRET) process between the GNPs and the FITC molecules, while pronounced fluorescence signals are observed in apoptotic cells because of the cleavage of the DEVD peptide by activated caspase‐3 present in the cells, which results in the release of FITC molecules. Thus, remarkable quenching and dequenching of fluorescence signals in response to activated caspase‐3 is observed. Apoptotic cells are detected in human hepatocyte (HuH‐7) multicellular tumor spheroids (MCTSs), a commonly used three‐dimensional in vitro model mimicking the in vivo biology of tumors, as early as one day post‐treatment with staurosporine, an apoptosis‐inducing agent; while growth inhibition (i.e., change in size) of the HuH‐7 MCTSs is only observed after a delay of three days (i.e., on day 4). This demonstrates the effectiveness of the FITC–DEVD–nanogel–GNP probe as a smart nanoprobe for real‐time monitoring as well as a more rapid assessment of the early response to cancer therapy.  相似文献   

6.
Therapeutic antibodies (e.g., trastuzumab, TRA) against human epidermal growth factor receptor 2 (HER2)‐positive breast cancers have shown benefits in controlling primary tumors, yet are ineffective against brain metastases due to their inability to cross the blood‐brain barrier (BBB). A novel hybrid nanoconstruct system is designed to deliver trastuzumab to brain metastasis of HER2‐positive breast cancer via a two‐step sequential targeting approach. Self‐assembly of a polysorbate 80 (PS 80)‐containing polymer, lipid, and polymer‐conjugated TRA forms hybrid nanoconstructs (TRA–terpolymer nanoparticles (TPN)) with high encapsulation efficiency and bioactivity. The PS 80 moiety enables the first‐step targeting and receptor‐mediated trancytosis across BBB is demonstrated in vitro with a 3D human BBB model in healthy and brain tumor‐bearing mice. The subsequent partial dissociation of the nanoconstructs exposes the encapsulated TRA for the second‐step targeting to HER2‐positive cancer cells in the brain. Intravenously injected TRA–TPN delivers 50‐fold TRA compared to free TRA to the brain metastasis of HER2‐positive breast cancer. Treatment with TRA–TPN increases tumor cell apoptosis by 4‐fold, inhibits tumor growth by 43‐fold, and prolongs median survival by >1.3‐fold compared to free TRA, without causing noticeable organ toxicity. These findings suggest the two‐step targeted nanoconstruct system is promising for shuttling therapeutic antibodies to treat central nervous system diseases.  相似文献   

7.
8.
In vivo delivery of siRNAs designed to inhibit genes important in cancer and other diseases continues to be an important biomedical goal. A new nanoparticle construct that is engineered for efficient delivery of siRNA to tumors is now described. The construct comprises a 47‐nm mesoporous silica nanoparticle core coated with a crosslinked polyethyleneimine–polyethyleneglycol copolymer, carrying siRNA against the human epidermal growth factor receptor type 2 (HER2) oncogene, and coupled to the anti‐HER2 monoclonal antibody (trastuzumab). The construct is engineered to increase siRNA blood half‐life, enhance tumor‐specific cellular uptake, and maximize siRNA knockdown efficacy. The optimized anti‐HER2 nanoparticles produce apoptotic death in HER2 positive (HER2+) breast cancer cells grown in vitro, but not in HER2 negative (HER2?) cells. One dose of the siHER2–nanoparticles reduces HER2 protein levels by 60% in trastuzumab‐resistant HCC1954 xenografts. Administration of multiple intravenous doses over 3 weeks significantly inhibits tumor growth (p < 0.004). The siHER2‐nanoparticles have an excellent safety profile in terms of blood compatibility and low cytokine induction, when exposed to human peripheral blood mononuclear cells. The construct can be produced with high batch‐to‐batch reproducibility and the production methods are suitable for large‐scale production. These results suggest that this siHER2‐nanoparticle is ready for clinical evaluation.  相似文献   

9.
Poly(thiophene) as a kind of n‐doped conjugated polymer with reversible redox behavior can be employed as anode material for lithium‐ion batteries (LIBs). However, the low redox activity and poor rate performance for the poly(thiophene)‐based anodes limit its further development. Herein, a structure‐design strategy is reported for thiophene‐containing conjugated microporous polymers (CMPs) with extraordinary electrochemical performance as anode materials in LIBs. The comparative study on the electrochemical performance of the structure‐designed thiophene‐containing CMPs reveals that high redox‐active thiophene content, highly crosslinked porous structure, and improved surface area play significant roles for enhancing electrochemical performances of the resulting CMPs. The all‐thiophene‐based polymer of poly(3,3′‐bithiophene) with crosslinked structure and a high surface area of 696 m2 g?1 exhibits a discharge capacity of as high as 1215 mAh g?1 at 45 mA g?1, excellent rate capability, and outstanding cycling stability with a capacity retention of 663 mAh g?1 at 500 mA g?1 after 1000 cycles. The structure–performance relationships revealed in this work offer a fundamental understanding in the rational design of CMPs anode materials for high performance LIBs.  相似文献   

10.
The use of solvent‐free microfluidics to fine‐tune the physical and chemical properties of chitosan nanoparticles for drug delivery is demonstrated. Nanoparticle self‐assembly is driven by pH changes in a water environment, which increases biocompatibility by avoiding organic solvent contamination common with traditional techniques. Controlling the time of mixing (2.5–75 ms) during nanoparticle self‐assembly enables us to adjust nanoparticle size and surface potential in order to maximize cellular uptake, which in turn dramatically increases drug effectiveness. The compact nanostructure of these nanoparticles preserves drug potency better than previous nanoparticles, and is more stable during long‐term circulation at physiological pH. However, when the nanoparticles encounter a tumor cell and the associated drop in pH, the drug contents are released. Moreover, the loading efficiency of hydrophobic drugs into the nanoparticles increases significantly from previous work to over 95%. The microfluidic techniques used here have applications not just for drug‐carrying nanoparticle fabrication, but also for the better control of virtually any self‐assembly process.  相似文献   

11.
12.
A series of new donor–acceptor (D–A)‐type semiconducting conjugated polymers (SCPs), which can form cross‐linked structural and supramolecular assembly films by hydrogen‐bonding, is successfully synthesized. The microstructures of supramolecular assembly films are further investigated by X‐ray diffraction (XRD), high‐ resolution transmission electron microscopy (HRTEM), and variable‐temperature Fourier transform infrared (FT‐IR) absorption spectra. As electronic transmission (ET) materials, the SCPs demonstrate superior properties by means of fabricating electron‐only devices with the configuration of ITO/ET (SCPs)/Ca/Al. According to space‐charge‐limited current (SCLC) measurements, fluorine‐containing SCPs exhibit much smaller threshold voltages and much higher electron mobilities than Alq3. Meanwhile, a significant enhancement for their luminescence properties is verified by the photoluminescence (PL) and electroluminescent (EL) spectra of cross‐linked‐type SCPs, compared to non‐cross‐linked‐type SCPs. The fabricated polymer light‐emitting diodes (PLEDs) with the configuration of ITO/PEDOT:PSS/EML (SCPs)/BCP/LiF/Al are able to emit the color from green to red with moderately low turn‐on voltages. These results suggested that cross‐linked D–A‐type SCP can become a potential candidate as a kind of multifunctional materials applied in the field of optoelectronic devices.  相似文献   

13.
To access smart optical theragnosis for cancer, an easily processable heterocyclic conjugated polymer (poly(sodium3‐((3‐methyl‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin‐3‐yl)methoxy)propane‐1‐sulfonate), PPDS) nanoassembly is fabricated by a surfactant‐free one‐step process, without the laborious ordinary multicoating process. The conjugated nanoassembly, with a self‐doped structure, provides strong absorbance in the near‐infrared (NIR) range even in a neutral pH medium and exhibits excellent stability (>six months). In addition, the prepared PPDS nanoassembly shows a high photothermal conversion efficiency of 31.4% in organic photothermal nanoparticles. In particular, the PPDS nanoassembly is stably suspended in the biological medium without any additives. Through a simple immobilization with the anti‐CD44 antibody, the prepared biomarker‐targetable PPDS nanoassembly demonstrates specific targeting toward CD44 (expressed in stem‐like cancer cells), allowing NIR absorbance imaging and the efficient targeted photothermal damaging of CD44‐expressing cancer cells, from in vitro 3D mammospheres (similar to the practical structure of tumor in the body) to in vivo xenograft mice tumor models (breast cancer and fibrosarcoma). In this study, the most simplified preparation method is for this organic conjugated polymer‐based nanoassembly by a molecular approach is reported, and demonstrated as a highly promising optical nanoagent for optical cancer theragnosis.  相似文献   

14.
A straightforward end‐capping strategy is applied to synthesize xanthate‐functional poly(2‐alkyl‐2‐oxazoline)s (PAOx) that enable gold nanoparticle functionalization by a direct “grafting to” approach with citrate‐stabilized gold nanoparticles (AuNPs). Owing to the presence of remaining citrate groups, the obtained PAOx@AuNPs exhibit dual stabilization by repulsive electrostatic and steric interactions giving access to water soluble molecular AND logic gates, wherein environmental temperature and ionic strength constitute the input signals, and the solution color the output signal. The temperature input value could be tuned by variation of the PAOx polymer composition, from 22 °C for poly(2‐npropyl‐2‐oxazoline)@AuNPs to 85 °C for poly(2‐ethyl‐2‐oxazoline)@AuNPs. Besides, advancing the fascinating field of molecular logic gates, the present research offers a facile strategy for the synthesis of PAOx@AuNPs of interest in fields spanning nanotechnology and biomedical sciences. In addition, the functionalization of PAOx with xanthate offers straightforward access to thiol‐functional PAOx of high interest in polymer science.  相似文献   

15.
Here, the design, synthesis, and characterization of laser nanomaterials based on dye‐doped methyl methacrylate (MMA) crosslinked with octa(propyl‐methacrylate) polyhedral oligomeric silsesquioxane (8MMAPOSS) is reported in relation to their composition and structure. The influence of the silicon content on the laser action of the dye pyrromethene 567 (PM567) is analyzed in a systematic way by increasing the weight proportion of POSS from 1 to 50%. The influence of the inorganic network structure is studied by replacing the 8MMAPOSS comonomer by both the monofunctionalized heptaisobutyl‐methacryl‐POSS (1MMAPOSS), which defines the nanostructured linear network with the POSS cages appearing as pendant groups of the polymeric chains, and also by a new 8‐hydrogenated POSS incorporated as additive to the polymeric matrices. The new materials exhibit enhanced thermal, optical, and mechanical properties with respect to the pure organic polymers. The organization of the molecular units in these nanomaterials is studied through a structural analysis by solid‐state NMR. The domain size of the dispersed phase assures a homogeneous distribution of POSS into the polymer, thus, a continuous phase corresponding to the organic matrix incorporates these nanometer‐sized POSS crosslinkers at a molecular level, in agreement with the transparency of the samples. The silicon–oxygen core framework has to be covalently bonded into the polymer backbone instead of being a simple additive and both the silica content and crosslinked degree exhibit a critical influence on the laser action.  相似文献   

16.
17.
18.
Alkoxy side‐chain tethered polyfluorene conjugated polyelectrolyte (CPE), poly[(9,9‐bis((8‐(3‐methyl‐1‐imidazolium)octyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐methoxyethoxy)ethyl)‐fluorene)] dibromide (F8imFO4), is utilized to obtain CPE‐hybridized ZnO nanoparticles (NPs) (CPE:ZnO hybrid NPs). The surface defects of ZnO NPs are passivated through coordination interactions with the oxygen atoms of alkoxy side‐chains and the bromide anions of ionic pendent groups from F8imFO4 to the oxygen vacancies of ZnO NPs, and thereby the fluorescence quenching at the interface of yellow‐emitting poly(p‐phenylene vinylene)/CPE:ZnO hybrid NPs is significantly reduced at the CPE concentration of 4.5 wt%. Yellow‐emitting polymer light‐emitting diodes (PLEDs) with CPE(4.5 wt%):ZnO hybrid NPs as a cathode interfacial layer show the highest device efficiencies of 11.7 cd A?1 at 5.2 V and 8.6 lm W?1 at 3.8 V compared to the ZnO NP only (4.8 cd A?1 at 7 V and 2.2 lm W?1 at 6.6 V) or CPE only (7.3 cd A?1 at 5.2 V and 4.9 lm W?1 at 4.2 V) devices. The results suggest here that the CPE:ZnO hybrid NPs has a great potential to improve the device performance of organic electronics.  相似文献   

19.
The synthesis of two cyan color (blue and green emission) displaying high molecular weight 2,6‐bis(pyrazolyl)pyridine‐co‐octylated phenylethynyl conjugated polymers (CPs) is presented. The conjugated polymers are solution‐processed to prepare spin coated thin films and self‐assembled nano/microscale spheres, exhibiting cyan color under UV. Additionally, the metal coordinating ability of the 2,6‐bis(pyrazolyl)pyridine available on the surface of the CP films and spheres is exploited to prepare red emitting Eu(III) metal ion containing conjugated polymer (MCCP) layer. The fabricated hybrid (CP/MCCP) films and spheres exhibit bright white‐light under UV exposure. The Commission Internationale de l'Eclairage (CIE) coordinates are found to be (x = 0.33, y = 0.37) for hybrid films and (x = 0.30, y = 0.35) for hybrid spheres. These values are almost close to the designated CIE coordinates for ideal white‐light color (x = 0.33, y = 0.33). This easy and efficient fabrication technique to generate white‐color displaying films and nano/microspheres signify an important method in bottom‐up nanotechnology of conjugated polymer based hybrid solid state assemblies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号