首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarization gratings were fabricated by the two‐beam coupling method on the surface of a series of polyoxetanes containing 4‐(N,N‐diphenyl)amino‐4′‐nitroazobenzene pendants with the azobenzene chromophores either side‐on attached or end‐on attached through short or long spacers to the main chain. The dynamics of formation of the gratings or writings was studied in relation to the diffraction efficiency. The erasing behavior of the gratings was also examined, irradiating a linearly polarized single beam. The temporal stability of the diffraction efficiency was further studied after removing the coupled excitation beam. Both the mode of attachment of the chromophore to the main chain and the length of the side‐chain spacer greatly influenced the dynamic properties of the diffraction gratings. The presence of a long side‐chain spacer and side‐on attachment of the chromophore resulted in faster writing and erasing behavior. A preliminary study by solid‐state 13C NMR of the relaxational behavior of the main‐chain CH2 groups and the pendant chromophores provided a reasonable picture to help explain the photo‐induced reorientation and relaxation of the azo chromophores at the molecular level.  相似文献   

2.
A general method is proposed to produce oriented and highly crystalline conducting polymer layers. It combines the controlled orientation/crystallization of polymer films by high‐temperature rubbing with a soft‐doping method based on spin‐coating a solution of dopants in an orthogonal solvent. Doping rubbed films of regioregular poly(3‐alkylthiophene)s and poly(2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[3,2‐b ]thiophene) with 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) yields highly oriented conducting polymer films that display polarized UV–visible–near‐infrared (NIR) absorption, anisotropy in charge transport, and thermoelectric properties. Transmission electron microscopy and polarized UV–vis–NIR spectroscopy help understand and clarify the structure of the films and the doping mechanism. F4TCNQ? anions are incorporated into the layers of side chains and orient with their long molecular axis perpendicular to the polymer chains. The ordering of dopant molecules depends closely on the length and packing of the alkyl side chains. Increasing the dopant concentration results in a continuous variation of unit cell parameters of the doped phase. The high orientation results in anisotropic charge conductivity (σ) and thermoelectric properties that are both enhanced in the direction of the polymer chains (σ = 22 ± 5 S cm?1 and S = 60 ± 2 µV K?1). The method of fabrication of such highly oriented conducting polymer films is versatile and is applicable to a large palette of semiconducting polymers.  相似文献   

3.
Ir(III) metal complexes with formula [(nazo)2Ir(Fppz)] ( 1 ), [(nazo)2Ir(Bppz)] ( 2 ), and [(nazo)2Ir(Fptz)] ( 3 ) [(nazo)H = 4‐phenyl quinazoline, (Fppz)H = 3‐trifluoromethyl‐5‐(2‐pyridyl) pyrazole, (Bppz)H = 3‐t‐butyl‐5‐(2‐pyridyl) pyrazole, and (Fptz)H = 3‐trifluoromethyl‐5‐(2‐pyridyl) triazole] were synthesized, among which the exact configuration of 1 was confirmed using single‐crystal X‐ray diffraction analysis. These complexes exhibited bright red phosphorescence with relatively short lifetimes of 0.4–1.05 μs in both solution and the solid‐state at room temperature. Non‐doped organic light‐emitting diodes (OLEDs) were fabricated using complexes 1 and 2 in the absence of a host matrix. Saturated red electroluminescence was observed at λmax = 626 nm (host‐emitter complex 1 ) and 652 nm (host‐emitter complex 2 ), which corresponds to coordinates (0.66,0.34) and (0.69,0.31), respectively, on the 1931 Commission Internationale de l'Eclairage (CIE) chromaticity diagram. The non‐doped devices employing complex 1 showed electroluminance as high as 5780 cd m–2, an external quantum efficiency of 5.5 % at 8 V, and a current density of 20 mA cm–2. The short phosphorescence lifetime of 1 in the solid state, coupled with its modest π–π stacking interactions, appear to be the determining factors for its unusual success as a non‐doped host‐emitter.  相似文献   

4.
Widely applicable nonaqueous solution routes have been employed for the syntheses of crystalline nanostructured tungsten oxide particles from a tungsten hexachloride precursor. Here, a systematic study on the crystallization and assembly behavior of tungsten oxide products made by using the bioligand deferoxamine mesylate (DFOM) (product I ), the two chelating ligands hexadecyltrimethylammoniumbromide (CTAB) ( II ) and poly(alkylene oxide) block copolymer (Pluronic P123) ( III ) is presented. The mechanistic pathways for the material synthesis are also discussed in detail. The tungsten oxide nanomaterials and reaction solutions are characterized by Fourier transform IR, 1H, and 13C NMR spectroscopies, powder X‐ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high‐resolution TEM, and selected‐area electron diffraction. The indexing of the line pattern suggests WO3 is in its monoclinic structure with a = 0.7297 nm, b = 0.7539 nm, c = 0.7688 nm, and β‐i; = 90.91 °. The nanoparticles formed have various architectures, such as chromosomal shapes (product I ) and slates ( II ), which are quite different from the mesoporous one ( III ) that has internal pores or mesopores ranging from 5 to 15 nm. The nanoparticles obtained from all the synthetic procedures are in the range of 40–60 nm. The investigation of the gas‐sensing properties of these materials indicate that all the sensors have good baseline stability and the sensors fabricated from material III present very different response kinetics and different CO detection properties. The possibility of adjusting the morphology and by that tuning the gas‐sensing properties makes the preparation strategies used interesting candidates for fabricating gas‐sensing materials.  相似文献   

5.
Indium tin oxide (ITO) has attracted intense interest as the most important transparent conducting oxide (TCO) that sees wide use in many opto‐electronic and photo‐chemical devices. The goal of this study is to explore the possibility of depositing ITO thin films using a bioinspired aqueous deposition route as an alternative. On the surface of sulfonated‐self assembled monolayers, Sn‐doped indium hydroxide films are obtained via a hydrogen peroxide‐assisted method. As a result, the as‐deposited indium tin hydroxide films possess a single hexagonal phase of In(OH)3· xH2O (0 ≤ x ≤ 1) with Sn doping percentage of (1.7 ± 0.2) at % and a column‐like hierachical microstructure. Structural, compositional and property studies, including electron microscopy, X‐ray diffraction, photoelectron spectroscopy, optical transmittance, photoluminescence and four‐probe conductivity measurements, are conducted. The possible mechanism based on oriented attachment is discussed for the film growth. Strong room temperature photoluminescence within the near UV range is observed in the case of Sn‐doped, but not in the one of the pure In(OH)3· xH2O films. Annealing of the indium tin hydroxide films above 200 °C gives nanocrystalline Sn:In2O3 films with higher UV and visible transparency and electrical conductivity compared with those of pure In2O3 films. The influence of annealing atmosphere is investigated.  相似文献   

6.
Solution‐processed metal‐oxide thin films based on high dielectric constant (k) materials have been extensively studied for use in low‐cost and high‐performance thin‐film transistors (TFTs). Here, scandium oxide (ScOx) is fabricated as a TFT dielectric with excellent electrical properties using a novel water‐inducement method. The thin films are annealed at various temperatures and characterized by using X‐ray diffraction, atomic‐force microscopy, X‐ray photoelectron spectroscopy, optical spectroscopy, and a series of electrical measurements. The optimized ScOx thin film exhibits a low‐leakage current density of 0.2 nA cm?2 at 2 MV cm?1, a large areal capacitance of 460 nF cm?2 at 20 Hz and a permittivity of 12.1. To verify the possible applications of ScOx thin films as the gate dielectric in complementary metal oxide semiconductor (CMOS) electronics, they were integrated in both n‐type InZnO (IZO) and p‐type CuO TFTs for testing. The water‐induced full oxide IZO/ScOx TFTs exhibit an excellent performance, including a high electron mobility of 27.7 cm2 V?1 s?1, a large current ratio (Ion/Ioff) of 2.7 × 107 and high stability. Moreover, as far as we know it is the first time that solution‐processed p‐type oxide TFTs based on a high‐k dielectric are achieved. The as‐fabricated p‐type CuO/ScOx TFTs exhibit a large Ion/Ioff of around 105 and a hole mobility of 0.8 cm2 V?1 at an operating voltage of 3 V. To the best of our knowledge, these electrical parameters are among the highest performances for solution‐processed p‐type TFTs, which represents a great step towards the achievement of low‐cost, all‐oxide, and low‐power consumption CMOS logics.  相似文献   

7.
Development of highly efficient circularly polarized organic light‐emitting diodes (CPOLEDs) has gained increasing interest as they show improved luminous efficiency and high contract 3D images in OLED displays. In this work, a series of binaphthalene‐containing luminogenic enantiomers with aggregation‐induced emission (AIE) and delayed fluorescence properties is designed and synthesized. These molecules can emit from green to red light depending on the solvent polarity due to the twisted intramolecular charge transfer effect. However, their solid powders show bright light emissions, demonstrating a phenomenon of AIE. All the molecules exhibit Cotton effects and circularly polarized luminescence in toluene solution and films. Multilayer CPOLEDs using the doped and neat films of the molecules as emitting layers are fabricated, which exhibit high external quantum efficiency of up to 9.3% and 3.5% and electroluminescence dissymmetry factor (gEL) of up to +0.026/?0.021 and +0.06/?0.06, respectively. Compared with doped CPOLEDs, the nondoped ones show higher gEL and much smaller current efficiency roll‐off due to the stronger AIE effect. By altering the donor unit, the electroluminescence maximum of the doped film can vary from 493 to 571 nm. As far as it is known, this is the first example of efficient CPOLEDs based on small chiral organic molecules.  相似文献   

8.
A novel framework of azide containing photo‐crosslinkable, conducting copolymer, that is, poly(azido‐styrene)‐random‐poly(triphenylamine) (X‐PTPA), is reported as a hole‐transporting material for efficient solution‐processed, multi‐layer, organic light emitting diodes (OLEDs). A facile and energy‐efficient crosslinking process is demonstrated with UV irradiation (254 nm, 2 mW/cm2) at a short exposure time (5 min). By careful design of X‐PTPA, in which 5 mol% of the photo‐crosslinkable poly(azido‐styrene) is copolymerized with hole‐transporting poly(triphenylamine) (X‐PTPA‐5), the adverse effect of the crosslinking of azide moieties is prevented to maximize the performances of X‐PTPA‐5. Since the photo‐crosslinking chemistry of azide molecules does not involve any photo‐initiators, superior hole‐transporting ability is achieved, producing efficient devices. To evaluate the performances of X‐PTPA‐5 as a hole‐transporting/electron‐blocking layer, Ir(ppy)3‐based, solution‐processable OLEDs are fabricated. The results show high EQE (11.8%), luminous efficiency (43.7 cd/A), and power efficiency (10.4 lm/W), which represent about twofold enhancement over the control device without X‐PTPA‐5 film. Furthermore, micro‐patterned OLEDs with the photo‐crosslinkable X‐PTPA‐5 can be fabricated through standard photolithography. The versatility of this approach is also demonstrated by introducing the same azide moiety into other hole‐transporting materials such as poly(carbazole) (X‐PBC).  相似文献   

9.
The field‐effect transistor (FET) and diode characteristics of poly(3‐alkylthiophene) (P3AT) nanofiber layers deposited from nanofiber dispersions are presented and compared with those of layers deposited from molecularly dissolved polymer solutions in chlorobenzene. The P3AT n‐alkyl‐side‐chain length was varied from 4 to 9 carbon atoms. The hole mobilities are correlated with the interface and bulk morphology of the layers as determined by UV–vis spectroscopy, transmission electron microscopy (TEM) with selected area electron diffraction (SAED), atomic force microscopy (AFM), and polarized carbon K‐edge near edge X‐ray absorption fine structure (NEXAFS) spectroscopy. The latter technique reveals the average polymer orientation in the accumulation region of the FET at the interface with the SiO2 gate dielectric. The previously observed alkyl‐chain‐length‐dependence of the FET mobility in P3AT films results from differences in molecular ordering and orientation at the dielectric/semiconductor interface, and it is concluded that side‐chain length does not determine the intrinsic mobility of P3ATs, but rather the alkyl chain length of P3ATs influences FET diode mobility only through changes in interfacial bulk ordering in solution processed films.  相似文献   

10.
RuO2‐based mesoporous thin films of optical quality are synthesized from ruthenium‐peroxo‐based sols using micelle templates made of amphiphilic polystyrene‐polyethylene oxide block copolymers. The mesoporous structure and physical properties of the RuO2 films (mesoporous volume: 30%; pore diameter: ~30 nm) can be controlled by the careful tuning of both the precursor solution and thermal treatment (150–350 °C). The optimal temperature that allows control of both mesoporosity and nanocristallinity is strongly dependent on the substrate (silicon or fluorine‐doped tin oxide). The structure of the resulting mesoporous films are investigated using X‐ray diffraction, X‐ray photoelectron spectroscopy, and atomic force microscopy. Mesoporous layers are additionally characterized by transmission and scanning electron microscopy and ellipsometry while their electrochemical properties are analyzed via cyclic voltammetry. Thick mesoporous films of ruthenium oxide hydrates, RuO2 · xH2O, obtained using a thermal treatment at 280 °C, exhibit capacitances as high as 1000 ± 100 F g?1 at a scan rate of 10 mV s?1, indicating their potential application as electrode materials.  相似文献   

11.
Regioregular head‐to‐tail (HT)‐coupled poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) with a weight‐average molecular weight (Mw) in the 7.3–69.6 kDa range is crystallized by directional epitaxial solidification in 1,3,5‐trichlorobenzene (TCB) to yield highly oriented thin films. An oriented and periodic lamellar structure consisting of crystalline lamellae separated by amorphous interlamellar zones is evidenced by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Both the overall crystallinity as well as the orientation of the crystalline lamellae decrease significantly with increasing Mw. The total lamellar periodicity is close to the length of “fully extended” chains for Mw = 7.3 kDa (polystyrene‐equivalent molecular weight, eq. PS) and it saturates to a value of ca. (25–28) ± 2 nm for Mw ≥ 18.8 kDa (eq. PS). This behavior is attributed to a transition from an oligomeric‐like system, for which P3HT chains are essentially in a fully extended all‐trans conformation and do not fold, to a semicrystalline system that involves a periodic alternation of crystalline lamellae separated by extended amorphous interlamellar zones, which harbor chain folds, chain ends, and tie molecules. For P3HT with Mw of ca. 7.3 kDa (eq. PS), epitaxial crystallization on TCB allows for the growth of both “edge‐on” and “flat‐on” oriented crystalline lamellae on the TCB substrate. The orientation of the lamellae is attributed to 1D epitaxy. Because of the large size of the “flat‐on” crystalline lamellae, a characteristic single‐crystal electron diffraction pattern corresponding to the [001] zone was obtained by selected area electron diffraction (SAED), indicating that P3HT crystallizes in a monoclinic unit cell with a = 16.0 Å, b = 7.8 Å, c = 7.8 Å, and γ = 93.5°.  相似文献   

12.
Tin‐based perovskites have exhibited high potential for efficient photovoltaics application due to their outstanding optoelectrical properties. However, the extremely undesired instabilities significantly hinders their development and further commercialization process. A novel tin‐based reduced‐dimensional (quasi‐2D) perovskites is reported here by using 5‐ammoniumvaleric acid (5‐AVA+) as the organic spacer. It is demonstrated that by introducing appropriate amount of ammonium chloride (NH4Cl) as additive, highly vertically oriented tin‐based quasi‐2D perovskite films are obtained, which is proved through the grazing incidence wide‐angle X‐ray scattering characterization. In particular, this approach is confirmed to be a universal method to deliver highly vertically oriented tin‐based quasi‐2D perovskites with various spacers. The highly ordered vertically oriented perovskite films significantly improve the charge collection efficiency between two electrodes. With the optimized NH4Cl concentration, the solar cells employing quasi‐2D perovskite, AVA2FAn?1SnnI3n+1 (<n> = 5), as light absorbers deliver a power conversion efficiency up to 8.71%. The work paves the way for further employing highly vertically oriented tin‐based quasi‐2D perovskite films for highly efficient and stable photovoltaics.  相似文献   

13.
A study of the photo‐oxidation of films of poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene vinylene] (MDMO‐PPV) blended with [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM), and solar cells based thereon, is presented. Solar‐cell performance is degraded primarily through loss in short‐circuit current density, JSC. The effect of the same photodegradation treatment on the optical‐absorption, charge‐recombination, and charge‐transport properties of the active layer is studied. It is concluded that the loss in JSC is primarily due to a reduction in charge‐carrier mobility, owing to the creation of more deep traps in the polymer during photo‐oxidation. Recombination is slowed down by the degradation and cannot therefore explain the loss in photocurrent. Optical absorption is reduced by photo‐bleaching, but the size of this effect alone is insufficient to explain the loss in device photocurrent.  相似文献   

14.
A new method for the preparation of phase‐pure ferromagnetic Fe3P films on quartz substrates is reported. This approach utilizes the thermal decomposition of the single‐source precursors H2Fe3(CO)9PR (R = tBu or Ph) at 400 °C. The films are deposited using a simple, home‐built metal‐organic chemical vapor deposition (MOCVD) apparatus and are characterized using a variety of analytical methods. The films exhibit excellent phase purity, as evidenced by X‐ray diffraction, X‐ray photoelectron spectroscopy, and field‐dependent magnetization measurements, the results of which agree well with measurements obtained from bulk Fe3P. Using scanning electron microscopy and atomic force microscopy techniques, the films are found to have thicknesses between 350 and 500 nm with a granular surface texture. As‐deposited Fe3P films are amorphous, and little or no magnetic hysteresis is observed in plots of magnetization versus applied field. Annealing the Fe3P films at 550 °C results in improved crystallinity as well as the observation of magnetic hysteresis.  相似文献   

15.
A flexible low‐density metallic material, which is extremely transparent, was obtained using as active component the highly conducting molecular metal θ‐(BET‐TTF)2Br·3H2O, BET‐TTF = bis(ethylenethio)tetrathiafulvalene. This material is a bilayer (BL) film that was prepared by treating a polycarbonate film containing 2 wt.‐% of molecularly dispersed BET‐TTF with vapor of a Br2/CH2Cl2 solution. Optimum conditions for the preparation of very transparent metallic materials were established. The X‐ray diffraction patterns indicate that the conducting layer of the BL films is formed by well a* oriented θ‐(BET‐TTF)2Br·3H2O nanocrystals, which are clearly observed in the SEM images. Conductivity measurements confirm that the nanocrystalline layers have the same transport properties as those of the single crystals, displaying metal‐like behavior down to He temperature and the highest room temperature conductivity (120 Ω–1 cm–1) reported so far for this kind of film.  相似文献   

16.
We showed that thin n‐type CuOx films can be deposited by radio‐frequency magnetron reactive sputtering and demonstrated the fabrication of n‐CuOx/intrinsic hydrogenated amorphous silicon (i‐a‐Si:H) heterojunction solar cells (HSCs) for the first time. A highly n‐doped hydrogenated microcrystalline Si (n‐µc‐Si:H) layer was introduced as a depletion‐assisting layer to further improve the performance of n‐CuOx/i‐a‐Si:H HSCs. An analysis of the external quantum efficiency and energy‐band diagram showed that the thin depletion‐assisting layer helped establish sufficient depletion and increased the built‐in potential in the n‐CuOx layer. The fabricated HSC exhibited a high open‐circuit voltage of 0.715 V and an efficiency of 4.79%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, inorganic silica nanoparticles are used to manipulate the morphology of 6,13‐bis(triisopropylsilylethynyl)‐pentacene (TIPS pentacene) thin films and the performance of solution‐processed organic thin‐film transistors (OTFTs). This approach is taken to control crystal anisotropy, which is the origin of poor consistency in TIPS pentacene based OTFT devices. Thin film active layers are produced by drop‐casting mixtures of SiO2 nanoparticles and TIPS pentacene. The resultant drop‐cast films yield improved morphological uniformity at ~10% SiO2 loading, which also leads to a 3‐fold increase in average mobility and nearly 4 times reduction in the ratio of measured mobility standard deviation (μStdev) to average mobility (μAvg). Grazing‐incidence X‐ray diffraction, scanning and transmission electron microscopy as well as polarized optical microscopy are used to investigate the nanoparticle‐mediated TIPS pentacene crystallization. The experimental results suggest that the SiO2 nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity.  相似文献   

18.
Hierarchical, two‐dimensional (2D), disc‐like networks consisting of crossed single‐crystalline Bi2S3 nanorods have been synthesized via a novel 2D‐template‐engaged topotactic transformation process, which involves the formation of intermediate BiOCl single‐crystalline discs and their subsequent chemical transformation into disc‐like Bi2S3 nanofabrics. The transformation process from (001)‐oriented BiOCl discs to disc‐like Bi2S3 nanorod networks has been followed by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and X‐ray diffraction (XRD), which revealed that the close matching between the lattice constants of the c‐axis for orthorhombic Bi2S3 and the a‐ or b‐axis for tetragonal BiOCl could be responsible for the preferential growth of [001]‐oriented Bi2S3 nanorods on the top faces of (001)‐oriented BiOCl discs along the two perpendicular [100] and [010] directions of BiOCl. The diameter of the Bi2S3 nanorods involved in the networks can be adjusted by changing the bismuth ion concentration in the reaction solution; moreover, an increase of the HCl concentration would prevent the formation of precursor BiOCl discs, leading to the formation of Bi2S3 nanostructures with varied morphologies. Charge–discharge curves and cyclic voltammograms of the obtained Bi2S3 nanostructures were measured to investigate their electrochemical hydrogen storage behaviors. It was found that the disc‐like Bi2S3 nanorod networks could electrochemically charge and discharge with a capacity of 162 mA h g?1 at room temperature, indicating their potential applications in hydrogen storage, high‐energy batteries, and catalytic fields.  相似文献   

19.
The moisture‐tolerant metal‐organic frameworks (MOFs) of formula [Zn4O(L)3]n (L = di‐substituted carboxypyrazolate derivatives) are fabricated as thin films on self‐assembled monolayer (SAM) functionalized gold substrates by employing the step‐by‐step liquid phase epitaxial (LPE) deposition method in a continuous operation mode. The in situ monitoring of the deposition by quartz crystal microbalance (QCM) and grazing incidence X‐ray diffraction reveal different growth regimes and crystallinities of the obtained thin films in dependence of the chosen alkyl side chain functionality at the carboxypyrazolate linkers, L. To overcome the relatively poor crystallinity and low porosity of a particular homostructured metal‐organic framework type B film, the step‐by‐step heteroepitaxial growth of this MOF B on top of the crystallite surfaces of a well‐grown and lattice‐matched MOF type A is applied. This approach enables the fabrication of oriented, core‐shell‐like MOF B @ A surface mounted heterocrystals as an intergrown homogeneous coating for the selective adsorption of volatile organic compounds. The accessible pore volumes of the individual components and the heterostructured films are characterized by performing adsorption measurements of different organic probe molecules using an environmentally controlled QCM instrument. The results show good adsorption capacity, excellent size exclusion selectivity for alcohols, and a high degree of moisture‐tolerance of the heteroepitaxial MOF films.  相似文献   

20.
Homogeneous p-Ag3AsS3 bulk single crystals with rhombic structure have been grown by planar crystallization from melts with atomic composition corresponding to this ternary compound. Photosensitive surface-barrier structures based on the interface between the surface of these crystals and thin films of pure indium are fabricated for the first time. The photosensitivity of fabricated structures is studied in natural and linearly polarized light. Photosensitivity spectra of In/p-Ag3AsS3 structures are measured for the first time and used to determine the nature and energy of interband transitions in p-Ag3AsS3 crystals. The phenomenon of natural photopleochroism is studied for surface-barrier structures grown on oriented p-Ag3AsS3 single crystals. It is concluded that Ag3AsS3 single crystals can be used in photoconverters of natural and linearly polarized light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号