首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanometer Si3N4 filled poly(ether ether ketone) (PEEK) composite blocks with different filler proportions were prepared by compression molding. Their friction and wear properties under distilled water lubrication, as well as under ambient dry conditions, were investigated on a block on ring machine by running a plain carbon steel (AISI 1045 steel) ring against the PEEK composite block. The worn surfaces of nanometer Si3N4 filled PEEK and the transfer film were observed by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The results showed that distilled water could reduce the friction coefficient of nanometer Si3N4 filled PEEK but with the sacrifice of a large reduction in wear resistance. The SEM and EPMA pictures of the worn surfaces indicated that the wear mechanisms of nanometer Si3N4 filled PEEK under distilled water lubrication and ambient dry rubbing conditions were different. Under water lubrication, the dominant wear mechanism of the filled PEEK was severe abrasive wear with surface fracture. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1394–1400, 2001  相似文献   

2.
High-density Si3N4-SiC ceramic nanocomposites have exceptional mechanical properties, but little is known about their electromagnetic wave absorption (EMA) capabilities. In this paper, the effects of sintering temperature and starting material compositions on the dielectric and EMA properties of hot-pressed Si3N4-SiC ceramic nanocomposites were investigated. The real and imaginary permittivities of Si3N4-SiC ceramic nanocomposites increase with increasing sintering temperature or SiC content, particularly at the sintering temperature of 1850°C and SiC content of 50 wt.%. This is primarily due to the improvement of interfacial and defect polarizations, which is caused by the doping of nitrogen into the SiC nanocrystals during the solution-precipitation process. The real and imaginary permittivities of Si3N4-SiC ceramic nanocomposites show decreasing trends as sintering aid content increases. Si3N4-SiC ceramic composites have both good EMA and mechanical properties when they are sintered at 1850°C with 30 wt.% SiC and 5–8 wt.% sintering aids. The minimum reflection loss and maximum flexural strength reach -58 dB and 586 MPa, respectively. Materials with multilayered structural designs have both strong and broad EMA properties.  相似文献   

3.
In this study, annealing influence on crystallization and scratch behavior of neat and multi‐wall carbon nanotube (MWNT) reinforced poly(ether ether ketone) (PEEK) nanocomposites have been investigated. Crystallization behavior of normal and annealed samples was investigated by using differential scanning calorimeter (DSC). Scratch behavior of normal and annealed samples was investigated by using micro scratch tester. In DSC analysis, it was detected that, melting enthalpy of annealed neat PEEK was increased sharply when compared to neat PEEK. Melting enthalpies of annealed PEEK nanocomposites prepared with addition of up to 1 wt% MWNT were increased with a decreased trend. However, nanocomposites with higher contents of MWNTs (>1 wt%) were dramatically affected by annealing process and melting enthalpy decreased sharply. Friction coefficient values of “annealed MWNT reinforced PEEK composites” were found to be lower than “normal PEEK composites.” Annealing process affects scratch hardness of both annealed and MWNT reinforced PEEK. Annealed nanocomposites with various MWNT concentrations showed higher scratch hardness values than normal PEEK nanocomposites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
A study on high performance poly(ether‐ether‐ketone) (PEEK) composites prepared by incorporating aluminum oxide (Al2O3), 0 to 50 wt % by hot compaction at 15 MPa and 350°C was described. Density, thermogravimetric analysis/differential scanning calorimetry, and scanning electron microscopy (SEM) were employed to evaluate their density, thermal stability, crystallinity, and morphology. Experimental density was found higher than theoretical density, which indicates that composite samples are sound. It was found that the addition of micron sized (< 15 μm) Al2O3 increased the peak crystallization temperature by 12°C when compared with neat PEEK with insignificant increase in melting temperature. Half‐time of crystallization is reduced from 2.05 min for the neat PEEK to 1.08 min for PEEK incorporated with 30 wt % Al2O3 because of the strong nucleation effect of Al2O3. The thermal stability of composites in air atmosphere was increased by 26°C. However, thermal stability in nitrogen atmosphere decreases at lower concentration of Al2O3 but increases above 20 wt % of Al2O3. Uniform dispersion of Al2O3 particles was observed in PEEK polymer matrix by SEM. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4623–4631, 2006  相似文献   

5.
Si3N4‐based nanocomposites containing 0–50 wt% TiC0.37N0.63 are directly consolidated at 1700°C by spark plasma sintering, and their reciprocal sliding behavior against a Si3N4 counterbody is investigated under a maximum Hertzian stress of 1.27 GPa in unlubricated conditions. The average grain widths of Si3N4 and TiC0.37N0.63 are about 85 and 90 nm, respectively. The decreasing relative densities of the as‐sintered nanocomposites indicate that the nano‐TiC0.37N0.63 may introduce pores and reduce the hardness and fracture resistance of the materials. The brittleness index for sliding contacts in all the samples is 25–31, indicating brittle fracture taking place on the wear surface and inducing cavities. When the mean free paths of nano‐TiC0.37N0.63 are slightly greater than grain length of Si3N4, the best wear resistance is achieved in Si3N4 containing 20/30 wt% TiC0.37N0.63 due to the process of surface smoothing by triboproducts. Severe wear response can be observed in Si3N4 nanocomposites containing 0, 10, 40, and 50 wt% of TiC0.37N0.63. The wear responses are explained by considering the microstructural parameters (like grain characteristics for both phases and mean free path of nano‐TiC0.37N0.63) and contact‐induced fracturing behavior, as well as tribochemical reactions.  相似文献   

6.
The wear and friction properties of poly (ether‐ether‐ketone) (PEEK) reinforced with 0–33 vol % (60 wt %) micron size Al2O3 composites were evaluated at a sliding speed of 1.0 m/s and nominal pressure from 0.5 to 1.25 MPa under dry sliding conditions using a pin‐on‐disk wear tester. The wear resistance of the pure PEEK is 10‐fold higher than that of mild steel under the similar test condition. It is improved to 18‐fold as compared with mild steel at 3.5 vol % Al2O3 content. The improvement in wear properties may be attributed to the thin, tenacious, and coherent transfer film formed between the steel countersurface and composite pin. However, the wear resistance of PEEK containing above 3.5 vol % Al2O3 was deteriorated, despite their higher hardness and stiffness as compared with that of composites containing lower Al2O3 content. This is attributed to the formation of thick and noncoherent transfer film, which does not prevent the wear of the composites from hard asperities of countersurface. Moreover, hard Al2O3 particles present in transfer film act as third body wear mechanism. The coefficient of friction of the composites is higher than that of pure PEEK. SEM and optical microscopy have shown that wear of pure PEEK occurs by the mechanism of adhesion mainly whereas of PEEK composites by microploughing and abrasion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Polyetheretherketone (PEEK) composites reinforced with potassium titanate whiskers (PTW) were compounded using a twin‐screw extruder followed by injection molding. The effects of PTW on the mechanical properties, crystallization performances and wear behaviors of PEEK under water lubrication have been investigated. It was denoted that the yield strength, Young's modulus, and microhardness of the composites increased with increasing whisker content, but the elongation at break and the impact strength showed decreasing trend. It was revealed that the inclusion of PTW could effectively reduce the friction coefficient and enhance the wear resistance of the PEEK. The DSC tests showed that the crystallinity of the composite slightly decreased with the addition of PTW, which might imply that the crystallinity of PEEK was not the dominant factor that influenced the wear properties of the composites. The enhancement on the wear resistance was attributed to the reinforced effect of PTW on PEEK. The wear mechanism changed from fatigue wear into mild abrasive wear when the PTW was added into PEEK. The lowest wear rate 9.3 × 10?8 mm3/Nm was achieved at 10 wt % PTW content. However, excessive whiskers would cause severe abrasive wear to the composite. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Silicon nitride materials containing 1–5 wt% of hexagonal boron nitride (micro-sized or nano-sized) were prepared by hot-isostatic pressing at 1700 °C for 3 h. Effect of hBN content on microstructure, mechanical and tribological properties has been investigated. As expected, the increase of hBN content resulted in a sharp decrease of hardness, elastic modulus and bending strength of Si3N4/BN composites. In addition, the fracture toughness of Si3N4/micro BN composites was enhanced comparing to monolithic Si3N4 because of toughening mechanisms in the form of crack deflection, crack branching and pullout of large BN platelets. The friction coefficient was not influenced by BN addition to Si3N4/BN ceramics. An improvement of wear resistance (one order of magnitude) was observed when the micro hBN powder was added to Si3N4 matrix. Mechanical wear (micro-failure) and humidity-driven tribochemical reaction were found as main wear mechanisms in all studied materials.  相似文献   

9.
The morphology, thermal, mechanical, and dielectric properties of high‐performance poly(etheretherketone)/Si3N4 nanocomposites fabricated by hot pressing were investigated. It was found that the coefficient of thermal expansion (CTE) and dissipation factor decreased significantly with increasing Si3N4 content, whereas thermal stability was affected slightly. A nanocomposite with 30 wt% Si3N4 exhibited about 45% and 23% decrease in CTE, below and above Tg, respectively. The glass‐transition temperature (Tg) was increased up to 20°C. Microhardness was improved by 20% at 10 wt% Si3N4 content and thereafter it improved slightly. Modified rule of mixture with β = 0.1 or Halpin–Tsai model with ξ = 4 fits well the microhardness. The dielectric constant and loss factor of the nanocomposites are quite low, and thermal stability is much higher compared with commercial products. Various models were also used to correlate CTE and dielectric constant. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

10.
《Ceramics International》2019,45(16):20243-20250
Different additives (metals, ceramics, and metal/ceramic assembles) were incorporated into chromium oxide (Cr2O3) coatings to improve its wear resistance. The doping or co-doping effects were compared in terms of the microstructure, phase composition, microhardness and sliding wear properties of plasma-sprayed Cr2O3-7wt.% Mo, Cr2O3-7wt.% Nb2O5, Cr2O3-4wt.% MoO3-3wt.% Mo, and Cr2O3-4wt.% Nb2O5-3wt.% Mo coatings. Under the low sliding loads, the composite coatings mated with WC-Co counterparts have lower friction coefficients than those against Si3N4, which are inverse with their microhardnesses, but more obvious fatigue wear characteristics. Under the high sliding loads, Mo/Nb2O5 co-doped Cr2O3 coating (CNM) has the best wear resistance than other coatings, due to the delaying co-effects of crack formation and propagation on basis of the crack deflection and the toughening effects of Mo additives and the high hardness of Nb2O5 additives. As the reciprocating sliding loads exceed the critical stress of brittle Cr2O3-based coatings, the coating detachments occur, displaying obvious fatigue wear characteristics.  相似文献   

11.
A new type of reduced graphene oxide-encapsulated silicon nitride (Si3N4@rGO) particle was synthesized via an electrostatic interaction between amino-functionalized Si3N4 particles and graphene oxide (GO). Subsequently, the Si3N4@rGO particles were incorporated into a Si3N4 matrix as a reinforcing phase to prepare nanocomposites, and their influence on the microstructure and mechanical properties of the Si3N4 ceramics was investigated in detail. The microstructure analysis showed that the rGO sheets were uniformly distributed throughout the matrix and firmly bonded to the Si3N4 grains to form a three-dimensional carbon network structure. This unique structure effectively increased the contact area and load transfer efficiency between the rGO sheets and the matrix, which in turn had a significant impact on the mechanical properties of the nanocomposites. The results showed that the nanocomposites with 2.25 wt.% rGO sheets exhibited mechanical properties that were superior to monolithic Si3N4; the flexural strength increased by 83.5% and reached a maximum value of 1116.4 MPa, and the fracture toughness increased by 67.7% to 10.35 MPa·m1/2.  相似文献   

12.
The isothermal crystallization behavior of nano-alumina particle-filled poly(ether ether ketone) (PEEK) composites has been investigated using differential scanning calorimeter. The results show that all the neat PEEK and nano-alumina-filled PEEK composites exhibit the double-melting behavior under isothermal crystallization. The peak crystallization times (τp) for all the neat PEEK and PEEK/aluminum oxide (Al2O3) composites increase with increasing crystallization temperature. Moreover, the crystallinity of the PEEK/Al2O3 composite with 7.5 wt % nano-filler content reached the maximum value of 44.8% at 290°C, higher than that of the neat PEEK polymer. From the lower value in τp and higher value in Xc for the PEEK/Al2O3 composites, the inclusion of the nano-alumina into the PEEK matrix favored the occurrence of heterogeneous nucleation. The Avrami exponents n of all the neat PEEK and PEEK/Al2O3 composites ranged from 2 to 3, and the n values for PEEK/Al2O3 composites were slightly higher than that of the neat PEEK polymer, indicating that the inclusion of the nano-filler made the crystallization mechanism more complex. However, the growth rate of crystallization was lowered as the nano- filler was introduced, and the decrease in growth rate reduced the grain size of the PEEK spherulites because of the lowering of molecule mobility during isothermal crystallization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Polyimide (PI) coatings filled with PTFE and nano‐Si3N4 were prepared by a spraying technique and successive curing. Nano‐Si3N4 particles were modified by grafting 3‐aminopropyltriethoxysilane to improve their dispersion in the as‐prepared coatings. Friction and wear performances and wear mechanisms of the coatings were evaluated. The results show that the incorporations of PTFE and modified nano‐Si3N4 particles greatly improve the friction reduction and wear resistance of PI coating. The friction and wear performance of the composite coating is significantly affected by the filler mass fraction and sliding conditions. PI coating incorporated with 20 wt % PTFE and 5 wt % modified nano‐Si3N4 displays the best tribological properties. Its wear rate is more than one order of magnitude lower and its friction coefficient is over two times smaller than that of the unfilled PI coating. Differences in the friction and wear behaviors of the hybrid coatings as a function of filler or sliding condition are attributed to the filler dispersion, the characteristic of transfer film formed on the counterpart ball and the wear mechanism of the coating under different sliding conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40410.  相似文献   

14.
Within the present work, additive-free amorphous bulk SiHfN ceramics with excellent mechanical properties were prepared by a resource-efficient low-temperature molding method, namely warm-pressing. As densification mechanism viscous flow has been identified based on cross-linking reaction. The critical problems concerning gas evolution and crystallization inducing bloating and cracking are addressed through controlled thermolysis and pressure. The microstructural evolution of the SiHfN ceramics indicates that the incorporation of Hf in perhydropolysilazane not only increases the ceramic yield (97.4 wt%) and crystallization resistance (1300 °C), but also suppresses the transformation from α-Si3N4 to β-Si3N4 at high temperatures (1700 °C). Especially, HfN/α-Si3N4 nanocomposites converted by the SiHfN ceramics at 1500 °C show a slight weight loss of 3.13 wt%, indicating the high temperature resistance of the ceramic nanocomposites. The method proposed in this work opens a new strategy to fabricate additive-free polycrystalline Si3N4- and amorphous Si3N4-based (nano)composites.  相似文献   

15.
The high temperature crystallization behavior of polytitanosilazane-derived amorphous SiTiN ceramics was investigated in a nitrogen atmosphere using XRD, Raman spectroscopy, TEM, SEM and BET. At 1400 °C, TiN is the first phase to nucleate in SiTiN ceramics forming nanocomposites with a homogeneous distribution of TiN nanocrystals within an amorphous Si3N4 matrix. Above 1400 °C, XRD indicates that the temperature at which Si3N4 crystallizes depends on the volume fraction of TiN present in nanocomposites. This is closely related to the chemistry of the polyorganosilazanes used to synthesize polytitanosilazanes. The use of perhydridopolysilazane, the most reactive polyorganosilazane, allows preparing TiN/Si3N4 nanocomposites with a remarkable stability of the amorphous matrix up to 1800 °C as mesoporous materials and powders. Dense monoliths crystallize earlier than the powder analogs because of the use of an ammonia pre-treatment before polymer warm-pressing.  相似文献   

16.
Si3N4 as a structural ceramic is desirable for applications in spacecraft, transportation, and energy, but its poor high-temperature properties still do not satisfy the actual requirements. Here, a TiC0.3N0.7 reinforced Si3N4 ceramic is successfully designed and fabricated via the high-temperature nitridation of TiCx. It is found that TiC0.3N0.7 grains with the size of 1-2 μm are uniformly dispersed in the Si3N4 matrix and show a firm bond with substrate. Compared with pure Si3N4, the doping of harder TiCN phase can effectively improve ceramic's hardness and fracture toughness at a certain temperature. Importantly, the ceramic material displays extraordinary wear resistance across a wide temperature range (eg, the wear rate of TiC0.3N0.7 containing Si3N4 over 63 times and 178 times better than pure Si3N4 at 600 and 900°C, respectively). More broadly, a correlation between wear mechanism and temperature is established, and the result shows that the mechanical strength and tribochemical oxidation as two key factors determine the wear behavior of the material. These results developed here can provide a springboard for preparation and optimization of multiphase ceramics that serve under high-temperature conditions.  相似文献   

17.
The aim of present work is to fabricate porous Si3N4 ceramics with considerable dimensions and homogeneous microstructure by self-propagating high temperature synthesis (SHS) using Si, Si3N4 diluent and Y2O3 as raw materials. The results indicate that Si3N4 diluent with coarse particle sizes and appropriate β-phase content is beneficial to obtain porous Si3N4 ceramics with homogeneous microstructure and excellent mechanical property by controlling the shrinkage inside the sample. The produced Si3N4 ceramics possessed excellent flexural strength of 168 MPa~259 MPa, and high Weibull modulus of 11.0~17.2. Additionally, BN and SiC are added as second phase to modify the properties of Si3N4-based ceramics. Optimum flexural strength of 170 MPa and 137 MPa were obtained with 10 wt.% addition of BN and SiC respectively. After oxidation at 1100 °C~1300 °C, second phase-doped Si3N4 ceramics also presented higher residual strength than pure Si3N4 ceramics.  相似文献   

18.
3-D molecular dynamics (MD) analyses of SiC–Si3N4 nanocomposite deformation and SiCO nanocomposite deformation are performed at 300 K, 900 K, and 1500 K. In SiC–Si3N4 nanocomposites, distribution of second phase SiC particles, volume fraction of atoms in GBs, and GB thickness play an important role in temperature dependent mechanical behavior. The deformation mechanism is a trade-off between the stress concentration caused by SiC particles and Si3N4–Si3N4 GB sliding. The temperature increase tends to work in favor of GB sliding leading to softening of structures. However, microstructural strength increases with increase in temperature when GBs are absent. In the case of SiCO nanocomposites, findings indicate that temperature change dependent amorphization of nanodomains, the nanodomain wall placement, the nanodomain wall thickness, and nanodomain size are important factors that directly affect the extent of crystallinity and the strength against mechanical deformation.  相似文献   

19.
《Ceramics International》2017,43(18):16248-16257
Si3N4-based composite ceramic tool materials with (W,Ti)C as particle reinforced phase were fabricated by microwave sintering. The effects of the fraction of (W,Ti)C and sintering temperature on the mechanical properties, phase transformation and microstructure of Si3N4-based ceramics were investigated. The frictional characteristics of the microwave sintered Si3N4-based ceramics were also studied. The results showed that the (W,Ti)C would hinder the densification and phase transformation of Si3N4 ceramics, while it enhanced the aspect-ratio of β-Si3N4 which promoted the mechanical properties. The Si3N4-based composite ceramics reinforced by 15 wt% (W,Ti)C sintered at 1600 °C for 10 min by microwave sintering exhibited the optimum mechanical properties. Its relative density, Vickers hardness and fracture toughness were 95.73 ± 0.21%, 15.92 ± 0.09 GPa and 7.01 ± 0.14 MPa m1/2, respectively. Compared to the monolithic Si3N4 ceramics by microwave sintering, the sintering temperature decreased 100 °C,the Vickers hardness and fracture toughness were enhanced by 6.7% and 8.9%, respectively. The friction coefficient and wear rate of the Si3N4/(W,Ti)C sliding against the bearing steel increased initially and then decreased with the increase of the mass fraction of (W,Ti)C., and the friction coefficient and wear rate reached the minimum value while the fraction of (W,Ti)C was 15 wt%.  相似文献   

20.
Gd2O3/PEEK (poly ether ether ketone) composites were prepared on a twin‐screw extruder by the incorporation of Gd2O3 as a shield against X‐ray to PEEK matrix. The influence of Gd2O3 addition and surface treatment of the particles with sulfonated PEEK (SPEEK) on the morphology, thermal and mechanical properties of the composites was investigated by SEM, DSC, TGA and tensile tests respectively. DSC results showed that both the crystallization temperature (Tc) and melting temperature (Tm) of the composites decreased compared with pure PEEK at random filler content, which suggested that Gd2O3 hindered the process of PEEK nucleation. The tensile modulus of the composites increased with addition of Gd2O3 and the strain to break decreased. But the tensile modulus and strength of modified series were always higher than that of unmodified ones at the same filler content. The X‐ray shielding properties of composites apparently improved with the increment of the Gd2O3. The X‐ray transmittance (A) of 45% S4GPEEK reduced greatly by about three to eight times compared with PEEKs in all energy range measured. POLYM. COMPOS., 36:651–659, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号