首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical-looping combustion (CLC) has emerged as a promising option for CO2 capture because this gas is inherently separated from the other flue gas components and thus no energy is expended for the separation. This technology would have some advantages if it could be adapted for its use with coal as fuel. In this sense, a process integrated by coal gasification and CLC could be used in power plants with low energy penalty for CO2 capture. This work presents the results obtained in the combustion of syngas as fuel with a Ni-based oxygen carrier prepared by impregnation in a CLC plant under continuous operation. The effect on the oxygen carrier behaviour and the combustion efficiency of several operating conditions was determined in the continuous CLC plant. High combustion efficiencies (~99%), close to the values limited by thermodynamics, were reached at oxygen carrier-to-fuel ratios higher than 5. The temperature in the FR had a significant influence, although high efficiencies were obtained even at 1073 K. The syngas composition had small effect on the combustion, obtaining high and similar efficiencies with syngas fuels of different composition, even in the presence of high CO concentrations. The low reactivity of the oxygen carrier with CO seemed to indicate that the water gas shift reaction acts as an intermediate step in the global reaction of the syngas in a continuous CLC plant. Neither agglomeration nor carbon deposition problems were detected during 50 h of continuous operation in the prototype. The obtained results showed that the impregnated Ni-based oxygen carrier could be used in a CLC plant for the combustion of syngas produced in an integrated gasification combined cycle (IGCC).  相似文献   

2.
This paper reports results of an analysis of experimental data on the combustion of a gasoline-hydrogen-air mixture in a reciprocating internal combustion engine cylinder. The completeness of combustion of the mixture is shown to depend on the amount of hydrogen in the fuel mixture and the composition and physicochemical properties of the mixture. In particular, the conditions of addition of hydrogen to the gasoline-air mixture with active chemical action on the combustion process and the action of hydrogen as an additional fuel component are determined. A dimensionless universal relation is proposed that allows one to uniquely determine the initial composition of the fuel mixture (hydrogen to gasoline ratio) to accomplish combustion of the fuel mixture at the lean combustion limit. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 4, pp. 8–14, July–August, 2007.  相似文献   

3.
An overview of technologies for fossil fuel‐fired power plants with drastically reduced CO2 emissions is given. Post‐combustion capture, pre‐combustion capture, and oxyfuel technology are introduced and compared. Current research results indicate that post‐combustion capture may lead to slightly higher losses in power plant efficiency than the two other technologies. However, retrofitting of existing plants with oxyfuel technology is complex and costly, and retrofitting of pre‐combustion capture is not possible. On the other hand, post‐combustion capture can be retrofitted to existing power plants with only minimal effort. Based on the mature technology of reactive absorption, it can be implemented on a large scale in the near future. Therefore, post‐combustion capture using reactive absorption is discussed here in some detail.  相似文献   

4.
This paper reviews the SO2 emission from a 0.3 m2 stainless‐steel fluidized‐bed combustor. Fine coal was premixed with fine limestone and fed pneumatically under the bed. The SO2 emission was found to depend largely on air staging ratio and bed temperature, which agrees with previous observations. The SO2 emission observed in sorbent‐free tests (reported earlier by Khan and Cibbs, 1995) was found to be proportional to the sulphur content of the fuel when limestone was added, the sulphur capture at a fixed Ca/S molar ratio was dependent on oxygen stoichiometry and bed temperature. Finely sized limestone enhanced the effectivity of the sorbent at low bed temperature and air staging ratio. During staged combustion, the combustion efficiency depended largely on primary air to coal ratio. Around 90% combustion efficiency was observed at 1 m/s fluidizing velocity which was reduced when fluidizing velocity was increased to 1.5 and 2 m/s. This reduction is due to increased elutriation of finer coal particles from the combustor.  相似文献   

5.
罗俊仪  吴石亮  肖睿 《化工学报》2022,73(2):847-856
双碳背景下,采用生物质基航空燃油替代传统航油成为当前的研究热点之一。生物质基航油组分与传统航油不同,生物质基航油的环烷烃由木质素加氢脱氧得到,与传统航油中的环烷烃在结构上有所差别。不同结构的环烷烃的燃烧特性有很大差别,基于此,本文通过可变压缩比内燃机研究了四种典型生物质基环烷烃(环戊烷、环己烷、乙基环己烷以及十氢萘)与RP-3航空航油掺混后的低温燃烧特性及其在压燃式发动机中对燃烧过程的影响以研究燃料单一性的可行性。结果表明提高掺混比例,十氢萘对燃烧效果有明显的促进作用,着火点提前,放热峰值有所增加,放热更为集中;乙基环己烷有着与航油相似的燃烧特性,而环己烷与环戊烷会使燃烧相位推迟,放热率下降,增大混合燃料的易压燃难度,不利于燃烧。研究对于木质素催化加氢制备环烷烃和生物质基环烷烃具有重要的指导意义。  相似文献   

6.
The purpose of this study was to analyze the exhaust emissions of DME fuel through experimental and numerical analyses of in-cylinder spray behavior. To investigate this behavior, spray characteristics such as the spray tip penetration, spray cone angle, and spray targeting point were studied in a re-entrant cylinder shape under real combustion chamber conditions. The combustion performance and exhaust emissions of the DME-fueled diesel engine were calculated using KIVA-3V. The numerical results were validated with experimental results from a DME direct injection compression ignition engine with a single cylinder.The combustion pressure and IMEP have their peak values at an injection timing of around BTDC 30°, and the peak combustion temperature, exhaust emissions (soot, NOx), and ISFC had a lower value. The HC and CO emissions from DME fuel showed lower values and distributions in the range from BTDC 25° to BTDC 10° at which a major part of the injected DME spray was distributed into the piston bowl area. When the injection timing advanced to before BTDC 30°, the HC and CO emissions showed a rapid increase. When the equivalence ratio increased, the combustion pressure and peak combustion temperature decreased, and the peak IMEP was retarded from BTDC 25° to BTDC 20°. In addition, NOx emissions were largely decreased by the low combustion temperature, but the soot emissions increased slightly.  相似文献   

7.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. For its use with coal as fuel in power plants, a process integrated by coal gasification and CLC would have important advantages for CO2 capture. This paper presents the combustion results obtained with a Cu-based oxygen carrier in a continuous operation CLC plant (500 Wth) using syngas as fuel. For comparison purposes pure H2 and CO were also used. Tests were performed at two temperatures (1073 and 1153 K), different solid circulation rates and power inputs. Full syngas combustion was reached at 1073 K working at f higher than 1.5. The syngas composition had small effect on the combustion efficiency. This result seems to indicate that the water gas shift reaction acts as an intermediate step in the global combustion reaction of the syngas. The results obtained after 40 h of operation showed that the copper-based oxygen carrier prepared by impregnation could be used in a CLC plant for syngas combustion without operational problems such as carbon deposition, attrition, or agglomeration.  相似文献   

8.
Homogeneous charged compression ignition (HCCI) is a promising combustion concept able to provide very low NOx and PM diesel engine emissions while keeping good fuel economy. Since HCCI combustion is a kinetically controlled process, the availability of a kinetic reaction mechanism to simulate the oxidation (low and high temperature regimes) of a diesel fuel is necessary for the optimisation, control and design of HCCI engines. Motivated by the lack of information regarding reliable diesel fuel ignition values under real HCCI diesel engine conditions, a diesel fuel surrogate has been proposed in this work by merging n-heptane and toluene kinetic mechanisms. The surrogate composition has been selected by comparing modelled ignition delay angles with experimental ones obtained from a single cylinder DI diesel engine tests. Modelled ignition angle results are in agreement with the experimental ones, both results following the same trends when changing the engine operating conditions (engine load and speed, start of injection and EGR rate). The effect of EGR, which is one of the most promising techniques to control HCCI combustion, depends on the engine load. High EGR rates decrease the n-heptane/toluene mixture reactivity when increasing the engine load but the opposite effect has been observed for lower EGR rates. A chemical kinetic analysis has shown that the influence of toluene on the ignition time is significant only at low initial temperature. More delayed combustion processes have been found when toluene is added, the dehydrogenation of toluene by OH (termination reaction) being the main kinetic path involved during toluene oxidation.  相似文献   

9.
The results of the investigations on the auto‐thermal combustion of lean gaseous fuels in a recuperative annular double‐layer catalytic converter were reported in the current contribution. Several modifications were proposed to improve the stationary and transient behaviour of the converters. The miniaturized recuperative converter exhibited reduced resistances to the mass and heat transfer and attractive bifurcation changes of a very low combustible content, that is, the histeresis for Tin and Cin and isola for mfin and hg. It was revealed that the utilization of an adiabatic recuperative converter led to an autothermal operation for Tin = 300 K and Cin = 177 ppmv of propane. The inlet fuel mass flow rate range to apply was wider than earlier reported in the literature, that is, 0.63–2.94 × 10?6 kg s?1 for Cin = 200 ppmv. Transient experiments showed that recuperative converter was able to transfer short‐time inlet disturbances of parameters due to the energy accumulation and temporal reversed recuperation counteracting to extinction or to destructive overheating of the catalysts. Stability analysis was performed showing location of folds, stable and unstable branches of solutions for the different parameters of the recuperative converter. A two‐dimensional process model was developed.  相似文献   

10.
Reducing the emission pollution associated with oil combustion is gaining an increasing interest worldwide. Recently, Brown’s gas (HHO gas) has been introduced as an alternative clean source of energy. A system to generate HHO gas has been built and integrated with Honda G 200 (197 cc single cylinder engine). The results show that a mixture of HHO, air, and gasoline cause a reduction in the concentration of emission pollutant constituents and an enhancement in engine efficiency. The emission tests have been done with varying the engine speed. The results show that nitrogen monoxide (NO) and nitrogen oxides (NOX) have been reduced to about 50% when a mixture of HHO, air, and fuel was used. Moreover, the carbon monoxide concentration has been reduced to about 20%. Also a reduction in fuel consumption has been noticed and it ranges between 20% and 30%.  相似文献   

11.
Biomass fuels come from many varieties of sources resulting in a wide range of physical and chemical properties. In this work, mathematical models of a packed bed system were employed to simulate the effects of four fuel properties on the burning characteristics in terms of burning rate, combustion stoichiometry, flue gas composition and solid-phase temperature. Numerical calculations were carried out and results were compared with measurements wherever possible. It was found that burning rate is mostly influenced by fuel size and smaller fuels result in higher combustion rate due to increased reacting surface area and enhanced gas-phase mixing in the bed; combustion stoichiometry is equally influenced by fuel LCV and size as a consequence of variation in burning rate as well as the mass ratio of combustible elements to the oxygen in the fuel; for the solid-phase temperature, material density has the strongest influence and a denser material has a higher maximum bed temperature as it results in a less fuel-rich combustion condition; while CO concentration in the flue gases is mostly affected by both fuel calorific value and size, CH4 in the exiting flow is greatly affected by material density due to change in reaction zone thickness.  相似文献   

12.
Tiegang Fang  Tien Mun Foong 《Fuel》2009,88(11):2154-2162
An optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine was used to investigate the spray and combustion processes for biodiesel blends under different injection strategies. The experimental results indicated that the heat release rate was dominated by a premixed combustion pattern and the heat release rate peak became smaller with injection timing retardation. The ignition and heat release rate peak occurred later with increasing biodiesel content. Fuel impingement on the wall was observed for all test conditions. The liquid penetration became longer and the fuel impingement was stronger with the increase of biodiesel content. Early and late injection timings result in lower flame luminosity due to improved mixing with longer ignition delay. For all the injection timings, lower soot luminosity was seen for biodiesel blends than pure diesel fuel. Furthermore, NOx emissions were dramatically reduced for premixed combustion mode with retarded post-TDC injection strategies.  相似文献   

13.
In the present paper, results of an experimental investigation carried out in a modern diesel engine running at different operative conditions and fuelled with blends of diesel and n-butanol, are reported. The exploration strategy was focused on the management of the timing and injection pressure to achieve a condition in which the whole amount of fuel was delivered before ignition. The aim of the paper was to evaluate the potential to employ fuel blends having low cetane number and high resistance to auto-ignition to reduce engine out emissions of NOx and smoke without significant penalty on engine performance. Fuel blends were mixed by the baseline diesel (BU00) with 20% and 40% of n-butanol by volume. The n-butanol was taken by commercial production that is largely produced through petrochemical pathways although the molecule is substantially unchanged for butanol produced through biological mechanisms.The experimental activity was performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system. The engine equipment includes an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injectors. Engine tests were carried out at 2500 rpm and 0.8 MPa of BMEP exploring the effect of start of injection, O2 concentration at intake and injection pressure on combustion behavior and engine out emissions. The in-cylinder pressure and rate of heat release were investigated for the neat diesel and the two blends to evaluate engine performance and exhaust emissions both for the conventional diesel and the advanced premixed combustion processes.The management of injection pressure, O2 concentration at intake and injection timing allowed to realize a partial premixed combustion by extending the ignition delay, particularly for blends. The main results of the investigation made reach smoke and NOx emissions due to the longer ignition delay and a better mixing control before combustion. The joint effect of higher resistance to auto ignition and higher volatility of n-butanol blends improved emissions compared to the neat diesel fuel with a low penalty on fuel consumption.  相似文献   

14.
This paper presents experimental results of rapeseed methyl ester (RME) and diesel fuel used separately as pilot fuels for dual-fuel compression-ignition (CI) engine operation with hydrogen gas and natural gas (the two gaseous fuels are tested separately). During hydrogen dual-fuel operation with both pilot fuels, thermal efficiencies are generally maintained. Hydrogen dual-fuel CI engine operation with both pilot fuels increases NOx emissions, while smoke, unburnt HC and CO levels remain relatively unchanged compared with normal CI engine operation. During hydrogen dual-fuel operation with both pilot fuels, high flame propagation speeds in addition to slightly increased ignition delay result in higher pressure-rise rates, increased emissions of NOx and peak pressure values compared with normal CI engine operation. During natural gas dual-fuel operation with both pilot fuels, comparatively higher unburnt HC and CO emissions are recorded compared with normal CI engine operation at low and intermediate engine loads which are due to lower combustion efficiencies and correspond to lower thermal efficiencies. This could be due to the pilot fuel failing to ignite the natural gas-air charge on a significant scale. During dual-fuel operation with both gaseous fuels, an increased overall hydrogen-carbon ratio lowers CO2 emissions compared with normal engine operation. Power output (in terms of brake mean effective pressure, BMEP) as well as maximum engine speed achieved are also limited. This results from a reduced gaseous fuel induction capability in the intake manifold, in addition to engine stability issues (i.e. abnormal combustion). During all engine operating modes, diesel pilot fuel and RME pilot fuel performed closely in terms of exhaust emissions. Overall, CI engines can operate in the dual-fuel mode reasonably successfully with minimal modifications. However, increased NOx emissions (with hydrogen use) and incomplete combustion at low and intermediate loads (with natural gas use) are concerns; while port gaseous fuel induction limits power output at high speeds.  相似文献   

15.
The technology of circulating fluidized beds (CFBs) is applied to temperature swing adsorption (TSA) processes for post‐combustion CO2 capture employing a commercial zeolite sorbent. Steady state operation is simulated through a one‐dimensional model, which combines binary adsorption with the CFB dynamics. Both single step and multi‐step arrangements are investigated. Extensive sensitivity analyses are performed varying the operating conditions, in order to assess the influence of the main operational parameters. The results reveal a neat superiority of multi‐step configurations over the standard one, in terms of both separation performance and efficiency. Compared to fixed‐bed TSA systems, CFB TSA features a high compactness degree. However, product purity levels are limited compared to the best performing fixed‐bed processes, and heat management within the system appears to be a major issue. As regards energy efficiency, CFB systems place themselves in between the most established absorption‐based technologies and the fixed‐bed TSA. © 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 64: 1744–1759, 2018  相似文献   

16.
J. Peng  Z. Y. Zhang  H. T. Niu 《Fuel Cells》2012,12(6):1009-1018
A three‐dimensional, two‐phase, multi‐component mixture model in conjunction with a finite‐volume‐based computational fluid dynamics (CFD) technique is applied to simulate the operation of membraneless fuel cell with Y‐shape channel. Hydrogen peroxide is employed both as fuel and oxidant, which are dissolved in diluted sodium hydroxide and sulfuric acid solutions, respectively. Almost all transport phenomena occurring in the fuel cell such as fluid flows, mass transport, electrochemical kinetics, and charge transport are accounted in this model. The oxygen O2 gas, which is a product on the anode electrode, is assumed to be insoluble. The presence of gas phase acts to prevent the processes of reactant supply and product removal. Thus, the cell performance is hindered, while it is operated at the normal current density situation. On the other hand, the capillary action is found to enhance the electrolyte transport in the anode porous electrode, which may slightly improve the cell performance at the high‐current density situation. Besides, a secondary vortex flow is induced due to the transportation of the gas phase, which drifts from the bottom to the top of the channel. The mixing zone is then inclined, which may result in serious fuel crossing phenomenon.  相似文献   

17.
In this paper, the air-fuel mixing and combustion in a small-bore direct injection optical diesel engine were studied for a retarded single injection strategy. The effects of injection pressure and timing were analyzed based on in-cylinder heat release analysis, liquid fuel and vapor fuel imaging by Laser induced exciplex fluorescence technique, and combustion process visualization. NOx emissions were measured in the exhaust pipe. Results show that increasing injection pressure benefits soot reduction while increases NOx emissions. Retarding injection timing leads to simultaneous reduction of soot and NOx emissions with premixed homogeneous charge compression ignition (HCCI) like combustion modes. The vapor distribution in the cylinder is relatively homogeneous, which confirms the observation of premixed combustion in the current studies. The postulated path of these combustion modes were analyzed and discussed on the equivalence ratio-temperature map.  相似文献   

18.
Fe‐based oxygen‐carrier particles with attapulgite (ATP) as a support material for coal chemical looping combustion (CLC) have been prepared using a sol‐gel approach. The multiredox characteristics of the prepared Fe4ATP6 (Fe2O3 to ATP mass ratio of 40:60) were experimentally examined in a batch fluidized bed reactor at 900°C. The experimental results indicated that the synergistic reactions between ATP and Fe2O3 increased the coal conversion. Fe4ATP6 exhibited high reactivity, particularly for low‐rank coals, in the CLC process. The improved pore structure and surface area were responsible for the high reactivity of Fe4ATP6. In 60 redox cycles, H2 was mainly generated in the outlet gas as the carbon conversion efficiency had reached 95%, and both the coal combustion efficiency and CO2 capture efficiency were greater than 95%. © 2015 American Institute of Chemical Engineers AIChE J, 62: 996–1006, 2016  相似文献   

19.
A finite‐volume numerical model for computer simulation of pulverized solid‐fuel combustion in furnaces with axisymmetric‐geometry swirl burner is presented. The simulation model is based on the k ? ε single phase turbulence model, considering the presence of the dispersed solid phase via additional source terms in the gas phase equations. The dispersed phase is treated by the particle source in cell (PSIC) method. Solid fuel particle devolatilization, homogenous and heterogeneous chemical reaction processes are modelled via a global combustion model. The radiative heat transfer equation is also resolved using the finite volume method. The numerical simulation code is validated by comparing computational and experimental results of pulverized coal in an experimental furnace equipped with a swirl burner. It is shown that the developed numerical code can successfully predict the flow field and flame structure including swirl effects and can therefore be used for the design and optimization of pulverized solid‐fuel swirl burners.  相似文献   

20.
An overview of technologies for fossil fuel power plants with drastically reduced CO2 emissions is given. Post combustion capture, Pre combustion capture, and Oxyfuel technology are introduced and compared. Current research results indicate that Post combustion capture may lead to slightly higher losses in power plant efficiency than the two other technologies. However, retrofitting of existing plants with Oxyfuel technology is complex and costly, and retrofitting of Pre combustion capture is not possible. On the other hand, Post combustion capture is suited for retrofitting. Based on the mature technology of reactive absorption, it can be implemented on a large scale in the near future. Therefore, Post combustion capture using reactive absorption is discussed here in some detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号