首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unusual electro‐optical behavior of colloidal suspensions of dichroic, elongated (rod‐shaped) pigment particles is reported. These suspensions exhibit nematic liquid crystal order at low volume fraction of the suspended particles (<15 wt%) and show a strong electric and optical response to an external electric field. Additionally, the characteristics of the optical response can be reversibly manipulated by illuminating the sample with light in its absorption band. The suspensions show a number of interesting phenomena like homeotropic‐planar orientational transitions and light‐induced pattern formation.  相似文献   

2.
Mineral liquid crystals are materials in which mineral's intrinsic properties are combined with the self‐organization behavior of colloids. However, the use of such a system for practical application, such as optical switching, has rarely been demonstrated due to the fundamental drawbacks of colloidal systems such as limited dispersion stability. Studying colloidal suspensions of LaPO4 nanorods, it is found that drastic improvement of colloidal stability can be obtained through a transfer of particles from water towards ethylene glycol, thus enabling the investigation of liquid crystalline properties of these concentrated suspensions. Using polarization microscopy and small‐angle x‐ray scattering (SAXS), self‐organization into nematic and columnar mesophases is observed enabling the determination of the whole phase diagram as a function of ionic strength and rod volume fraction. When an external alternative electric field is applied, a very efficient orientation of the nanorods in the liquid‐crystalline suspension is obtained, which is associated with a significant optical birefringence. These properties, combined with the high colloidal stability, are promising for the use of such high transparent and athermal material in electro‐optical devices.  相似文献   

3.
Nanometer‐sized surfactant‐templated materials are prepared in the form of stable suspensions of colloidal mesoporous silica (CMS) consisting of discrete, nonaggregated particles with dimensions smaller than 200 nm. A high‐yield synthesis procedure is reported based on a cationic surfactant and low water content that additionally enables the adjustment of the size range of the individual particles between 50 and 100 nm. Particularly, the use of the base triethanolamine (TEA) and the specific reaction conditions result in long‐lived suspensions. Dynamic light scattering reveals narrow particle size distributions in these suspensions. Smooth spherical particles with pores growing from the center to the periphery are observed by using transmission electron microscopy, suggesting a seed‐growth mechanism. The template molecules could be extracted from the nanoscale mesoporous particles via sonication in acidic media. The resulting nanoparticles give rise to type IV adsorption isotherms revealing typical mesopores and additional textural porosity. High surface areas of over 1000 m2 g–1 and large pore volumes of up to 1 mL g–1 are obtained for these extracted samples.  相似文献   

4.
Understanding and controlling 3D nanocrystal self‐assembly is a fundamental challenge in materials science. Assembly enables the unique optical and electronic properties of nanocrystals to be exploited in macroscopic materials, and also opens up the possibility to couple the optical response of nanocrystals to the optical modes of the superlattice. To date, assembly of such nanocrystal superlattices (NCSL) has focussed on fixed, close packed structures with particle separations of just 1–3 nm. To achieve highly crystalline structures with tunable optical response, the nanocrystal interparticle separation needs to be precise and easily variable but >50 nm. Here, we show the preparation of nanocrystal superlattices with spacings of 50–500 nm assembled from gold‐poly‐N‐isopropylacrylamide core‐shell particles and the characterization of their fascinating diffraction behavior by means of UV‐vis spectroscopy. These nanocrystal superlattices exhibit pronounced diffraction in the visible (440‐560 nm) with peak half‐widths of the order of 10 nm. The position of the Bragg peak is simply tuned by adjusting the particle volume fraction. Due to the thermoresponsive nature of the polymer shell, temperature is used to initiate crystallization or melting of the superlattice. Heating and cooling cycles cause highly reversible melting/recrystallization in less than a minute.  相似文献   

5.
In this study, the fast transient evolution of the electric field assisted thickness Z‐direction orientation and assembly of clay particles is studied using a instrumented real time system that simultaneously measures in‐plane and out of plane birefringence. The optical anisotropy master curves are developed, connecting the exposure time and electric field strength with orientation, using a superposition principle. Z‐oriented nanocomposite films manufactured through the R2R process show enhancement through thickness ionic conductivity, useful for membranes of batteries and fuel cells.  相似文献   

6.
Mimicking the intelligence of biological organisms in artificial systems to design smart actuators that act autonomously in response to constant environmental stimuli is crucial to the construction of intelligent biomimetic robots and devices, but remains a great challenge. Here, a light‐driven autonomous carbon‐nanotube‐based bimorph actuator is developed through an elaborate structural design. This curled droplet‐shaped actuator can be simply driven by constant white light irradiation, self‐propelled by a light‐mechanical negative feedback loop created by light‐driven actuation, time delay in the photothermal response along the actuator, and good elasticity from the curled structure, performing a continuously self‐oscillating motion in a wavelike fashion, which mimics the human sit‐up motion. Moreover, this autonomous self‐oscillating motion can be further tuned by controlling the intensity and direction of the incident light. The autonomous actuator with continuous wavelike oscillating motion shows immense potential in light‐driven biomimetic soft robots and optical‐energy‐harvesting devices. Furthermore, a self‐locomotive artificial snake with phototaxis is constructed, which autonomously and continuously crawls toward the light source in a wave‐propagating manner under constant light irradiation. This snake can be placed on a substrate made of triboelectric materials to realize continuous electric output when exposed to constant light illumination.  相似文献   

7.
Transparent ultraviolet (UV) photodetectors are an essential component of next‐generation “see‐through” electronics. However, the current photodetectors often suffer from relatively slow response speeds and high driving voltages. Here, all‐solution‐processed UV photodetectors are reported that are facilely prepared from environmentally friendly and abundant materials. The UV photodetectors are composed of a titanium dioxide thin film as the photosensitive layer sandwiched between two different transparent electrodes to form asymmetric Schottky junctions. The photodetector with high optical transparency can operate at zero bias because of spontaneous separation of photogenerated electron–hole pairs by the built‐in electric field. The resulting self‐powered photodetector displays high sensitivity to broadband UV light (200–400 nm). In particular, an ultrafast response speed up to 44 ns is obtained, representing a significant improvement over those of the conventional transparent photodetectors. Moreover, the photodetector has been successfully applied, for the first time, in a UV communication system as the self‐powered signal receiver. This work uniquely combines the features of high optical transparency and self‐power ability into UV photodetectors and would enable a broad range of optoelectronic applications.  相似文献   

8.
MXenes (Ti3C2) are 2D transition‐metal carbides and carbonitrides with high conductivity and optical transparency. However, transparent MXene electrodes suitable for polymer light‐emitting diodes (PLEDs) have rarely been demonstrated. With the discovery of the excellent electrical stability of MXene under an alternating current (AC), herein, PLEDs that employ MXene electrodes and exhibit high performance under AC operation (AC MXene PLEDs) are presented. The PLED exhibits a turn‐on voltage, current efficiency, and brightness of 2.1 V, 7 cd A?1, and 12 547 cd m?2, respectively, when operated under AC with a frequency of 1 kHz. The results indicate that the undesirable electric breakdown associated with heat arising from the poor interface of the MXene with a hole transport layer in the direct‐current mode is efficiently suppressed by the transient injection of carriers accompanied by the alternating change of the electric polarity under the AC, giving rise to reliable light emission with a high efficiency. The solution‐processable MXene electrode can be readily fabricated on a flexible polymer substrate, allowing for the development of a mechanically flexible AC MXene PLED with a higher performance than flexible PLEDs employing solution‐processed nanomaterial‐based electrodes such as carbon nanotubes, reduced graphene oxide, and Ag nanowires.  相似文献   

9.
Periodic micro‐arrays of straight linear defects containing nanoparticles can be created over large surface areas at the transition from the nematic to smectic‐A phase in a nanoparticle–liquid crystal (LC) composite material confined under the effect of conflicting anchoring conditions (unidirectional planar vs normal) and electric fields. Anisomeric dichroic dye molecules and rod‐shaped fluorescent semiconductor nanocrystals (dot‐in‐rods) with large permanent electric dipole and high linearly polarized photoluminescence quantum yield align parallel to the local LC molecular director and follow its reorientation under application of the electric field. In the nano‐sized core regions of linear defects, where the director is undefined, anisotropic particles align parallel to the defect whereas spherical quantum dots do not show any particular interaction with the defect. Under application of an electric field, ferroelectric semiconductor nanoparticles in the core region align along the field, perpendicular to the defect direction, whereas dichroic dyes remain parallel to the defect. This study provides useful insights into the complex interaction of anisotropic nanoparticles and anisotropic soft materials such as LCs in the presence of external fields, which may help the development of field‐responsive nanoparticle‐based functional materials.  相似文献   

10.
Colloidal quantum‐dot light‐emitting diodes (QDLEDs) with the HfO2/SiO2‐distributed Bragg reflector (DBR) structure are fabricated using a pulsed spray coating method. Pixelated RGB arrays, 2‐in. wafer‐scale white light emission, and an integrated small footprint white light device are demonstrated. The experimental results show that the intensity of red, green, and blue (RGB) emission exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increases the use in the UV optical pumping of RGB QDs. A pulsed spray coating method is crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film is used as the interface layer between each RGB color to avoid cross‐contamination and self‐assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remain constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures is observed in the integrated device. The resulting color gamut of the proposed QDLEDs covers an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high‐quality display technology.  相似文献   

11.
The photoelectronic characteristics of single‐crystalline nanowire organic phototransistors (NW‐OPTs) are studied using a high‐performance n‐channel organic semiconductor, N,N′‐bis(2‐phenylethyl)‐perylene‐3,4:9,10‐tetracarboxylic diimide (BPE‐PTCDI), as the photoactive layer. The optoelectronic performances of the NW‐OPTs are analyzed by way of their current–voltage (IV) characteristics on irradiation at different wavelengths, and comparison with corresponding thin‐film organic phototransistors (OPTs). Significant enhancement in the charge‐carrier mobility of NW‐OPTs is observed upon light irradiation as compared with when performed in the dark. A mobility enhancement is observed when the incident optical power density increases and the wavelength of the light source matches the light‐absorption range of the photoactive material. The photoswitching ratio is strongly dependent upon the incident optical power density, whereas the photoresponsivity is more dependent on matching the light‐source wavelength with the maximum absorption range of the photoactive material. BPE‐PTCDI NW‐OPTs exhibit much higher external quantum efficiency (EQE) values (≈7900 times larger) than thin‐film OPTs, with a maximum EQE of 263 000%. This is attributed to the intrinsically defect‐free single‐crystalline nature of the BPE‐PTCDI NWs. In addition, an approach is devised to analyze the charge‐transport behaviors using charge accumulation/release rates from deep traps under on/off switching of external light sources.  相似文献   

12.
A study of the optical properties of poly(9,9‐dioctylfluorene‐co‐bithiophene) (F8T2) is reported, identifying this polymer as one that possesses a desirable combination of charge transport and light emission properties. The optical and morphological properties of a series of polymer blends with F8T2 dispersed in poly(9,9‐dioctylfluorene) (PFO) are described and almost pure‐green emission from light emitting diodes (LEDs) based thereon is demonstrated. High luminance green electroluminescence from LEDs using only a thin film of F8T2 for emission is also reported. The latter demonstration for a polymer previously primarily of interest for effective charge transport constitutes an important step in the development of emissive materials for applications where a union of efficient light emission and effective charge transport is required.  相似文献   

13.
The cover shows an organic light‐emitting diode with remote metallic cathode, reported by Sarah Schols and co‐workers on p. 136. The metallic cathode is displaced from the light‐emission zone by one to several micrometers. The injected electrons accumulate at an organic heterojunction and are transported to the light‐emission zone by field‐effect. The achieved charge‐carrier mobility and in combination with reduced optical absorption losses because of the remoteness of the cathode may lead to applications as waveguide OLEDs and possibly a laser structure. (The result was obtained in the EU‐funded project “OLAS” IST‐ FP6‐015034.) We describe an organic light‐emitting diode (OLED) using field‐effect to transport electrons. The device is a hybrid between a diode and a field‐effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light‐emitting zone. This micrometer‐sized distance can be bridged by electrons with enhanced field‐effect mobility. The device is fabricated using poly(triarylamine) (PTAA) as the hole‐transport material, tris(8‐hydroxyquinoline) aluminum (Alq3) doped with 4‐(dicyanomethylene)‐2‐methyl‐6‐(julolindin‐4‐yl‐vinyl)‐4H‐pyran (DCM2) as the active light‐emitting layer, and N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (PTCDI‐C13H27), as the electron‐transport material. The obtained external quantum efficiencies are as high as for conventional OLEDs comprising the same materials. The quantum efficiencies of the new devices are remarkably independent of the current, up to current densities of more than 10 A cm–2. In addition, the absence of a metallic cathode covering the light‐emission zone permits top‐emission and could reduce optical absorption losses in waveguide structures. These properties may be useful in the future for the fabrication of solid‐state high‐brightness organic light sources.  相似文献   

14.
A highly selective enhancement of the optical response of the inner tubes of double‐walled carbon nanotubes has been identified upon transformation of the residual C atoms inside the hollow core to linear carbon chains (LCC). By varying the growth conditions and using standardized suspensions, it has been observed that this optical response depends sensitively on the tube diameter and LCC growth yield. It is reported how the formation of LCC by postsynthesis annealing at 1400 °C leads to an increase of the photoluminescence (PL) signal of the inner tubes up to a factor of 6 for tubes with (8,3) chirality. This behavior can be attributed to a local charge transfer from the inner tubes to the carbon chains, counterbalancing quenching mechanisms induced by the outer tubes. These findings provide a viable pathway to enhance the low PL quantum yield of double‐walled carbon nanotubes and proof the capability of inner tubes to exhibit photoluminescence.  相似文献   

15.
A MEL‐type pure‐silica zeolite (PSZ), prepared by spin‐on of nanoparticle suspensions, has been shown to be a promising ultra‐low‐dielectric‐constant (k) material because of its high mechanical strength, hydrophobicity, and chemical stability. In our previous works, a two‐stage synthesis method was used to synthesize a MEL‐zeolite nanoparticle suspension, in which both nanocrystal yield and particle size of the zeolite suspension increased with increasing synthesis time. For instance, at a crystal yield of 63%, the particle size is 80 nm, which has proved to be too large because it introduces a number of problems for the spin‐on films, including large surface roughness, surface striations, and large mesopores. In the current study, the two‐stage synthesis method is modified into an evaporation‐assisted two‐stage method by adding a solvent‐evaporation process between the two thermal‐treatment steps. The modified method can yield much smaller particle sizes (e.g., 14 vs. 80 nm) while maintaining the same nanocrystal yields as the two‐stage synthesis. Furthermore, the nanoparticle suspensions from the evaporation‐assisted two‐stage synthesis show a bimodal particle size distribution. The primary nanoparticles are around 14 nm in size and are stable in the final suspension with 60% solvent evaporation. The factors that affect nanocrystal synthesis are discussed, including the concentration, pH value, and viscosity. Spin‐on films prepared by using suspensions synthesized this way have no striations and improved elastic modulus (9.67 ± 1.48 GPa vs. 7.82 ± 1.30 GPa), as well as a similar k value (1.91 ± 0.09 vs. 1.89 ± 0.08) to the previous two‐stage synthesized films.  相似文献   

16.
The photoresponse of ferroelectric smectic side‐chain liquid‐crystalline (LC) polymers containing a photoisomerizable azobenzene derivative as a covalently linked photochromic side group is investigated. By static measurements in different photostationary states, the effect of trans–cis isomerization on the material's phase‐transition temperatures and its ferroelectric properties (spontaneous electric polarization PS and director tilt angle θ) are analyzed. It turns out that the Curie temperature (transition SC* to SA) can be reversibly shifted by up to 17 °C. The molecular mechanism of this “photoferroelectric effect” is studied in detail using time‐resolved measurements of the dye's optical absorbance, the director tilt angle, and the spontaneous polarization, which show a direct response of the ferroelectric parameters to the molecular isomerization. The kinetics of the thermal reisomerization of the azo dye in the LC matrix are evaluated. A comparison to the reisomerization reaction in isotropic solution (toluene) reveals a faster thermal relaxation of the dye in the LC phase.  相似文献   

17.
Nanostructured crystalline silicon is promising for thin‐silicon photovoltaic devices because of reduced material usage and wafer quality constraint. This paper presents the optical and photovoltaic characteristics of silicon nanohole (SiNH) arrays fabricated using polystyrene nanosphere lithography and reactive‐ion etching (RIE) techniques for large‐area processes. A post‐RIE damage removal etching is subsequently introduced to mitigate the surface recombination issues and also suppress the surface reflection due to modifications in the nanohole sidewall profile, resulting in a 19% increase in the power conversion efficiency. We show that the damage removal etching treatment can effectively recover the carrier lifetime and dark current–voltage characteristics of SiNH solar cells to resemble the planar counterpart without RIE damages. Furthermore, the reflectance spectra exhibit broadband and omnidirectional anti‐reflective properties, where an AM1.5 G spectrum‐weighted reflectance achieves 4.7% for SiNH arrays. Finally, a three‐dimensional optical modeling has also been established to investigate the dimension and wafer thickness dependence of light absorption. We conclude that the SiNH arrays reveal great potential for efficient light harvesting in thin‐silicon photovoltaics with a 95% material reduction compared to a typical cell thickness of 200 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Although phototransistors for controlling photocurrent with electricity have been studied intensively for several decades, transistors with all‐optical inputs that can control the photocurrent with light have not been investigated thus far. In this paper, a plasmonic porous Ag/TiO2 transistor is fabricated with all‐optical inputs. One light input acts as the source to generate a plasmonic‐hot‐electron photocurrent, while the other gate light changes the current channel by adjusting the height of an Ag/TiO2 Schottky barrier. As a result, the plasmon‐induced photocurrent generated by the source light can be enhanced by several to one hundred times by controlling the gate light. In addition to signal enhancement, the device can also be used for signal modulation and switching.  相似文献   

19.
Self‐assembly of different sized colloidal particles into multicomponent crystals results in novel material properties compared to the properties of the individual components alone. The formation of binary and, for the first time, ternary colloidal crystals through a simple and inexpensive confined‐area evaporation‐induced layer‐by‐layer (LBL) assembly method is reported. The proposed method produces high quality multicomponent colloidal crystal films over a broad range of particle size‐ratios and large surface areas (cm2) from silica/polystyrene colloidal suspensions of low concentration. By adjusting the size‐ratio and concentration of the colloidal particles, complex crystals of tunable stoichiometries are fabricated and their structural characteristics are further confirmed with reported crystal analogues. In addition, complex structures form as a result of the interplay of the template layer effect, the surface forces exerted by the meniscus of the drying liquid, the space filling principle, and entropic forces. Thus, this LBL approach is a versatile way to grow colloidal crystals with binary, ternary, or more complex structures.  相似文献   

20.
Poly(lactide‐co‐glycolic acid) (PLGA) particles are biocompatible and bio­degradable, and can be used as a carrier for various chemotherapeutic drugs, imaging agents and targeting moieties. Micrometer‐sized PLGA particles were synthesized with gold nanoparticles and DiI dye within the PLGA shell, and perfluorohexane liquid (PFH) in the core. Upon laser irradiation, the PLGA shell absorbs the laser energy, activating the liquid core (liquid conversion to gas). The rapidly expanding gas is expelled from the particle, resulting in a microbubble; this violent process can cause damage to cells and tissue. Studies using cell cultures show that PLGA particles phagocytosed by single cells are consistently vaporized by laser energies of 90 mJ cm?2, resulting in cell destruction. Rabbits with metastasized squamous carcinoma in the lymph nodes are then used to evaluate the anti‐cancer effects of these particles in the lymph nodes. After percutaneous injection of the particles and upon laser irradiation, through the process of optical droplet vaporization, ultrasound imaging shows a significant increase in contrast in comparison to the control. Histology and electron microscopy confirm damage with disrupted cells throughout the lymph nodes, which slows the tumor growth rate. This study shows that PLGA particles containing PFC liquids can be used as theranostic agents in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号