首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charge transport and nongeminate recombination are investigated in two solution‐processed small molecule bulk heterojunction solar cells consisting of diketopyrrolopyrrole (DPP)‐based donor molecules, mono‐DPP and bis‐DPP, blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PCBM). While the bis‐DPP system exhibits a high fill factor (62%) the mono‐DPP system suffers from pronounced voltage dependent losses, which limit both the fill factor (46%) and short circuit current. A method to determine the average charge carrier density, recombination current, and effective carrier lifetime in operating solar cells as a function of applied bias is demonstrated. These results and light intensity measurements of the current‐voltage characteristics indicate that the mono‐DPP system is severely limited by nongeminate recombination losses. Further analysis reveals that the most significant factor leading to the difference in fill factor is the comparatively poor hole transport properties in the mono‐DPP system (2 × 10?5 cm2 V?1 s?1 versus 34 × 10?5 cm2 V?1 s?1). These results suggest that future design of donor molecules for organic photovoltaics should aim to increase charge carrier mobility thereby enabling faster sweep out of charge carriers before they are lost to nongeminate recombination.  相似文献   

2.
Semi‐ionically fluorinated graphene (s‐FG) is synthesized with a one step liquid fluorination treatment. The s‐FG consists of two different types of bonds, namely a covalent C‐F bond and an ionic C‐F bond. Control is achieved over the properties of s‐FG by selectively eliminating ionic C‐F bonds from the as prepared s‐FG film which is highly insulating (current < 10?13 A at 1 V). After selective elimination of ionic C‐F bonds by acetone treatment, s‐FG recovers the highly conductive property of graphene. A 109 times increase in current from 10?13 to 10?4A at 1 V is achieved, which indicates that s‐FG recovers its conducting property. The properties of reduced s‐FG vary according to the number of layers and the single layer reduced s‐FG has mobility of more than 6000 cm2 V?1 s?1. The mobility drastically decreases with increasing number of layers. The bi‐layered s‐FG has a mobility of 141cm2 V?1 s?1 and multi‐layered s‐FG film showed highly p‐type doped electrical property without Dirac point. The reduction via acetone proceeds as 2C2F(semi‐ionic) + CH3C(O)CH3(l) → HF + 2C(s) + C2F(covalent) + CH3C(O)CH2(l). The fluorination and reduction processes permit the safe and facile non‐destructive property control of the s‐FG film.  相似文献   

3.
We prepared a novel multi‐functional dual‐layer polymer electrolyte by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF6) solution. The first layer, based on a microporous polyethylene, is incompatible with a liquid electrolyte, and the second layer, based on poly (vinylidenefluoride‐co‐hexafluoropropylene), is submicroporous and compatible with an electrolyte solution. The maximum ionic conductivity is 7 × 10?3 S/cm at ambient temperature. A unit cell using the optimum polymer electrolyte showed a reversible capacity of 198 mAh/g at the 500th cycle, which was about 87% of the initial value.  相似文献   

4.
Transparent, ion‐conducting, and flexible ionogels based on the room temperature ionic liquid (IL) 1‐butyl‐3‐methylimidazolium bis(trifluoromethane sulfonyl)imide [Bmim][N(Tf)2], the dye‐IL (DIL) 1‐butyl‐3‐methylimidazolium methyl orange [Bmim][MO], and poly(methylmethacrylate) (PMMA) are prepared. Upon IL incorporation the thermal stability of the PMMA matrix significantly increases from 220 to 280 °C. The ionogels have a relatively high ionic conductivity of 10?4 S cm?1 at 373 K. Most importantly, the ionogels exhibit a strong and reversible color change when exposed to aqueous or organic solutions containing protons or hydroxide ions. The resulting material is thus a prototype of soft multifunctional matter featuring ionic conductivity, easy processability, response to changes in the environment, and a strong readout signal, the color change, that could be used in optical data storage or environmental sensing.  相似文献   

5.
Solid‐state lithium (Li) batteries using solid electrolytes and Li anodes are highly desirable because of their high energy densities and intrinsic safety. However, low ambient‐temperature conductivity and poor interface compatibility of solid electrolytes as well as Li dendrite formation cause large polarization and poor cycling stability. Herein, a high transference number intercalated composite solid electrolyte (CSE) is prepared by the combination of a solution‐casting and hot‐pressing method using layered lithium montmorillonite, poly(ethylene carbonate), lithium bis(fluorosulfonyl)imide, high‐voltage fluoroethylene carbonate additive, and poly(tetrafluoroethylene) binder. The electrolyte presents high ionic conductivity (3.5 × 10?4 S cm?1), a wide electrochemical window (4.6 V vs Li+/Li), and high ionic transference number (0.83) at 25 °C. In addition, a 3D Li anode is also fabricated via a facile thermal infusion strategy. The synergistic effect of high transference number intercalated electrolyte and 3D Li anode is more favorable to suppress Li dendrites in a working battery. The solid‐state batteries based on LiFePO4 (Al2O3 @ LiNi0.5Co0.2Mn0.3O2), CSE, and 3D Li deliver admirable cycling stability with discharge capacity 145.9 mAh g?1 (150.7 mAh g?1) and capacity retention 91.9% after 200 cycles at 0.5 C (92.0% after 100 cycles at 0.2 C) at 25 °C. This work affords a splendid strategy for high‐performance solid‐state battery.  相似文献   

6.
Materials involving nanoconfinement of ionic liquids (ILs) have been pursued for functionalities and ionic devices. However, their complex synthesis, challenges to achieve long‐range order, and laborious tunability limit their practical implementation. Herein, these challenges are addressed by complexing surfactants to ILs, yielding a facile, modular, and scalable approach. Based on structural screening, ionic complexation of di‐n‐nonylamine to the terminal sulfonic acid of 1‐(4‐sulfobutyl)‐3‐methylimidazolium hydrogen sulfate IL is selected as a proof of concept. Spontaneous homeotropic smectic order over micrometers is observed, with alternating ionic and alkyl layers. The 1 nm thick ionic layers involve 2D crystalline internal order up to 150 °C, strongly promoting anisotropic ion transport (σ|| > 6500), and curiously, still allowing fluidity. High ionic conductivity of 35 mS cm?1 and mesoscopic diffusion coefficient of ≈10?5 cm2 s?1 at 150 °C along the ionic layers are observed. Fast anisotropic ion transport by simply complexing two components open doors to functional materials and applications.  相似文献   

7.
Ionic liquid (IL) electrolytes with concentrated Li salt can ensure safe, high‐performance Li metal batteries (LMBs) but suffer from high viscosity and poor ionic transport. A locally concentrated IL (LCIL) electrolyte with a non‐solvating, fire‐retardant hydrofluoroether (HFE) is presented. This rationally designed electrolyte employs lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), 1‐methyl‐1‐propyl pyrrolidinium bis(fluorosulfonyl)imide (P13FSI) and 1,1,2,2‐tetrafluoroethyl 2,2,3,3‐tetrafluoropropyl ether (TTE) as the IL and HFE, respectively (1:2:2 by mol). Adding TTE enables a Li‐concentrated IL electrolyte with low viscosity and good separator wettability, facilitating Li‐ion transport to the Li metal anode. The non‐flammability of TTE contributes to excellent thermal stability. Furthermore, synergy between the dual (FSI/TFSI) anions in the LCIL electrolyte can help modify the solid electrolyte interphase, increasing Li Coulombic efficiency and decreasing dendritic Li deposition. LMBs (Li||LiCoO2) employing the LCIL electrolyte exhibit good rate capability (≈89 mAh g?1 at 1.8 mA cm?2, room temperature) and long‐term cycling (≈80% retention after 400 cycles).  相似文献   

8.
A new amorphous molecular material, tris[4‐(5‐phenylthiophen‐2‐yl)phenyl]amine (TPTPA), is synthesized and characterized. TPTPA forms a stable amorphous glass with a glass‐transition temperature of 83 °C when the melt sample is cooled. It also forms amorphous thin films by a thermal deposition technique. TPTPA exhibits a hole drift mobility of 1.0 × 10?2 cm2 V?1 s?1 at an electric field of 1.0 × 105 V cm?1 and at 293 K, as determined by the time‐of‐flight method, which is of the highest level among those of amorphous molecular materials. pn‐Heterojunction organic photovoltaic devices (OPVs) using TPTPA as an electron donor and C60 or C70 as an electron acceptor exhibit high performance with fill factors of 0.66~0.71 and power conversion efficiencies of 1.7~2.2% under air‐mass (AM) 1.5G illumination at an intensity of 100 mW cm?2, which are of the highest level ever reported for OPVs using amorphous molecular materials.  相似文献   

9.
Mechanically robust, highly ionic conductive gels based on a random copolymer of poly[styrene‐ran‐1‐(4‐vinylbenzyl)‐3‐methylimidazolium hexafluorophosphate] (P[S‐r‐VBMI][PF6]) and the ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) are successfully prepared. The gels with either homo P[VBMI][PF6] or conventional PS‐block‐poly(methyl methacrylate)‐block‐PS (SMS) show significant trade‐off between ionic conductivity and mechanical resilience. In contrast, the P[S‐r‐VBMI][PF6]‐based gels exhibit both large elastic modulus (≈0.105 MPa) and ionic conductivity (≈1.15 mS cm−1) at room temperature. To demonstrate that these materials can be used as solid‐state electrolytes, the ion gels are functionalized by incorporating electrochromic (EC) chromophores (ethyl viologen, EV2+) and are applied to EC devices (ECDs). The devices show low‐voltage operation, large optical transmittance variation, and good cyclic coloration/bleaching stability. In addition, flexible ECDs are fabricated to take advantage of the mechanical properties of the gels. The ECDs have excellent bending durability under both compressive and tensile strains. The versatile P[S‐r‐VBMI][PF6]‐based gel is anticipated to be of advantage in flexible electrochemical applications, such as batteries and electrochemical displays.  相似文献   

10.
Solid state lithium metal batteries are the most promising next‐generation power sources owing to their high energy density and safety. Solid polymer electrolytes (SPE) have gained wide attention due to the excellent flexibility, manufacturability, lightweight, and low‐cost processing. However, fatal drawbacks of the SPE such as the insufficient ionic conductivity and Li+ transference number at room temperature restrict their practical application. Here vertically aligned 2D sheets are demonstrated as an advanced filler for SPE with enhanced ionic conductivity, Li+ transference number, mechanical modulus, and electrochemical stability, using vermiculite nanosheets as an example. The vertically aligned vermiculite sheets (VAVS), prepared by the temperature gradient freezing, provide aligned, continuous, run‐through polymer‐filler interfaces after infiltrating with polyethylene oxide (PEO)‐based SPE. As a result, ionic conductivity as high as 1.89 × 10?4 S cm?1 at 25 °C is achieved with Li+ transference number close to 0.5. Along with their enhanced mechanical strength, Li|Li symmetric cells using VAVS–CSPE are stable over 1300 h with a low overpotential. LiFePO4 in all‐solid‐state lithium metal batteries with VAVS–CSPE could deliver a specific capacity of 167 mAh g?1 at 0.1 C at 35 °C and 82% capacity retention after 200 cycles at 0.5 C.  相似文献   

11.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films are obtained using ionic liquids as additives. Upon adding 1‐ethyl‐3‐methylimidazolium tetracyanoborate (EMIM TCB) to the conducting polymer, the conductivity increases to 2084 S cm?1; this is attributed to the phase separation of PSS leading to a structural change in the film. A comparative study with 1‐butyl‐3‐methyl imidazolium tetrafluoroborate (BMIM BF4) shows that EMIM TCB gives higher conductivity and transmittance and can be regarded as one of the most promising additives for the preparation of indium tin oxide (ITO)‐free organic devices using PEDOT:PSS/EMIM TCB as electrodes.  相似文献   

12.
In this work, a joint experimental and computational study on the synthesis, self‐assembly, and ionic conduction characteristics of a new conjugated liquid crystal quaterthiophene/poly(ethylene oxide) (PEO4) consisting of terminal tetraethyleneglycol monomethyl ether groups on both ends of a quaterthiophene core is performed. In agreement with molecular dynamic simulations, temperature‐dependent grazing‐incidence wide angle X‐ray scattering and X‐ray diffraction indicate that the molecule spontaneously forms a smectic phase at ambient temperature as characterized both in bulk and thin film configurations. Significantly, this smectic phase is maintained upon blending with bis(trifluoro‐methanesulfonyl)imide as ion source at a concentration ratio up to r = [Li+]/[EO] = 0.05. Nanosegregation between oligothiophene and PEO moieties and π–π stacking of thiophene rings lead to the formation of efficient 2D pathways for ion transport, resulting in thin‐film in‐plane ionic conductivity as high as 5.2 × 10?4 S cm?1 at 70 °C and r = 0.05 as measured by electrochemical impedance spectroscopy. Upon heating the samples above a transition temperature around 95 °C, an isotropic phase forms associated with a pronounced drop in ionic conductivity. Upon cooling, partial and local reordering of the conducting smectic domains leads to an ionic conductivity decrease compared to the as‐cast state.  相似文献   

13.
In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10?4 W cm?2 °C?1, similar to that of glass (11.1 × 10?4 W cm?2 °C?1) but smaller than that of chromium (17.1 × 10?4 W cm?2 °C?1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems.  相似文献   

14.
Two regioisomeric D1‐A‐D‐A‐D1 type π‐conjugated molecules (1,4‐bis{5‐[4‐(5‐fluoro‐7‐(5‐hexylthiophen‐2‐yl)benzo[c ][1,2,5]thiadiazole)]­thiophen‐2‐yl}‐2,5‐bis(hexyldecyloxy)benzene (Prox‐FBT) and 1,4‐bis{5‐[4‐(6‐fluoro‐7‐(5‐hexylthiophen‐2‐yl)benzo[c ][1,2,5]thiadiazole)]­thiophen‐2‐yl}‐2,5‐bis(hexyldecyloxy)benzene (Dis‐FBT)) are synthesized, by controlling the fluorine topology to be proximal or distal relative to the central core. The different F geometries are confirmed by the 1H–1H nuclear Overhauer effect spectroscopy (NOESY). Clearly different optical, electrochemical, and thermal transition behaviors are obtained, i.e., stronger absorption, deeper valance band (by ≈0.2 eV), and higher melting/recrystallization temperatures (by 7–20 °C) are observed for Dis‐FBT. The different intermolecular packing and unit cell structures are also calculated for the two regioisomers, based on the powder X‐ray diffraction and 2D grazing‐incidence wide‐angle X‐ray diffraction measurements. A tighter π–π packing with a preferential monoclinic face‐on orientation is extracted for Dis‐FBT, compared to Prox‐FBT with bimodal orientations. Different topological structures significantly affect the electrical and photovoltaic properties, where Prox‐FBT shows higher parallel hole mobility (2.3 × 10?3 cm2 V?1 s?1), but Dis‐FBT demonstrates higher power conversion efficiency (5.47%) with a larger open‐circuit voltage of 0.95 V (vs 0.79 V for Prox‐FBT). The findings suggest that small changes in the topological geometry can affect the electronic structure as well as self‐assembly behaviors, which can possibly be utilized for fine‐adjusting the electrical properties and further optimization of optoelectronic devices.  相似文献   

15.
Owing to the nonleakage and incombustibility, solid electrolytes are crucial for solving the safety issues of rechargeable lithium batteries. In this work, a new class of solid electrolyte, acceptor‐doped LiTaSiO5, is designed and synthesized based on the concerted migration mechanism. When Zr4+ is doped to the Ta5+ sites in LiTaSiO5, the high‐energy lattice sites are partly occupied by the introduced lithium ions, and the lithium ions at those sites interact with the lithium ions placed in the low‐energy sites, thereby favoring the concerted motion of lithium ions and lowering the energy barrier for ion transport. Therefore, the concerted migration of lithium ions occurs in Zr‐doped LiTaSiO5, and a 3D lithium‐ion diffusion network is established with quasi‐1D chains connected through interchain channels. The lithium‐ion occupation, as revealed by ab initio calculations, is validated by neutron powder diffraction. Zr‐doped LiTaSiO5 electrolytes are successfully synthesized; Li1.1Ta0.9Zr0.1SiO5 shows a conductivity of 2.97 × 10?5 S cm?1 at 25 °C, about two orders of magnitude higher than that of LiTaSiO5, and it increases to 3.11 × 10?4 S cm?1 at 100 °C. This work demonstrates the power of theory in designing new materials.  相似文献   

16.
Developing high-performance nanofluidic fibers with synergetic ionic and electric conductivities is promising for human–machine interface interaction. In such a scenario, inter- and intra-forces in constituent flakes are recognized as crucial factors in determining the derived nanofluidic fiber performance. In this work, the rheological properties of Ti3C2Tx MXene solution are systematically optimized by regulating the electrostatic interaction via introducing multivalent metal cations. As a result, such multivalent cations trigger ionic crosslinking and remarkably strengthen the interaction force between nanosheets, which even forms into a tight fiber-shaped gel network. A series of cations, such as K+, Na+, Mg2+, Zn2+, and Al3+, are introduced to enhance the ionic cross-linking between interconnected flakes. The thus-prepared Zn2+-Ti3C2Tx fiber exhibits a remarkable electrical conductivity of 11 200 S cm−1, a tensile strength of 252 MPa, and an ionic conductivity of 2.51 × 10−3 S cm−1. This multivalent cation crosslinking strategy could offer some insights into developing functional nanofluidic fibers for wearable or healthcare applications.  相似文献   

17.
Solid‐state mixed ionic–electronic conductors (MIECs) in which ionic transport is commonly accompanied by predominant electronic conductivity underpin key technologies and require universal characterization methods for monitoring transport at the nanoscale, at both high and near ambient temperatures, the latter being especially challenging. In this study, a novel dynamic current–voltage analysis technique is utilized to decouple ionic and electronic transport properties from each other. The versatility of the method is demonstrated by enabling measurement of the oxygen vacancy mobility in Pr0.1Ce0.9O2?δ thin films, across an unusually wide temperature range, from 35 to 500 °C. Despite the presence of predominant electronic conduction, the oxygen vacancy mobility in Pr0.1Ce0.9O2?δ is measured, being 6.8 × 10?6 cm2 V?1 s?1 at 500 °C, decreasing by seven orders of magnitude down to 35 °C, and following a single thermal activation energy of 0.82 ± 0.02 eV. A comparison with previous reports on oxygen vacancy transport and with the one derived in this study from impedance spectroscopy, interpreted with the Jamnik–Maier model, further confirms the dynamic current–voltage analysis results. This method can more generally be applied to other types of MIECs, thereby enabling deeper insights into mobile ionic defect transport and accompanying thermodynamic properties.  相似文献   

18.
A series of isoindigo‐based conjugated polymers (PII2F‐CmSi, m = 3–11) with alkyl siloxane‐terminated side chains are prepared, in which the branching point is systematically “moved away” from the conjugated backbone by one carbon atom. To investigate the structure–property relationship, the polymer thin film is subsequently tested in top‐contact field‐effect transistors, and further characterized by both grazing incidence X‐ray diffraction and atomic force microscopy. Hole mobilities over 1 cm2 V?1 s?1 is exhibited for all soluble PII2F‐CmSi (m = 5–11) polymers, which is 10 times higher than the reference polymer with same polymer backbone. PII2F‐C9Si shows the highest mobility of 4.8 cm2 V?1 s?1, even though PII2F‐C11Si exhibits the smallest π–π stacking distance at 3.379 Å. In specific, when the branching point is at, or beyond, the third carbon atoms, the contribution to charge transport arising from π–π stacking distance shortening becomes less significant. Other factors, such as thin‐film microstructure, crystallinity, domain size, become more important in affecting the resulting device's charge transport.  相似文献   

19.
A novel phosphorus‐containing porous polymer is efficiently prepared from tris(4‐vinylphenyl)phosphane by radical polymerization, and it can be easily ionized to form an ionic porous polymer after treatment with hydrogen iodide. Upon ionic exchange, transition‐metal‐containing anions, such as tetrathiomolybdate (MoS4 2?) and hexacyanoferrate (Fe(CN)6 3?), are successfully loaded into the framework of the porous polymer to replace the original iodide anions, resulting in a polymer framework containing complex anions (termed HT‐Met, where Met = Mo or Fe). After pyrolysis under a hydrogen atmosphere, the HT‐Met materials are efficiently converted at a large scale to metal‐phosphide‐containing porous carbons (denoted as MetP@PC, where again Met = Mo or Fe). This approach provides a convenient pathway to the controlled preparation of metal‐phosphide‐loaded porous carbon composites. The MetP@PC composites exhibit superior electrocatalytic activity for the hydrogen evolution reaction (HER) under acidic conditions. In particular, MoP@PC with a low loading of 0.24 mg cm?2 (on a glass carbon electrode) affords an iR‐corrected (where i is current and R is resistance) current density of up to 10 mA cm?2 at 51 mV versus the reversible hydrogen electrode and a very low Tafel slope of 45 mV dec?1, in rotating disk measurements under saturated N2 conditions.  相似文献   

20.
An effective way of using ionic liquid as a gate dielectric as well as a pressure medium to tune the transport of an exemplary polymer semiconductor, poly(2,5‐bis(3‐tetradecyl‐thiophene‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C14) is presented. Working as gate dielectrics, the ionic liquids exhibit the well‐known ability to induce dense carriers (>1020 cm?3) in the polymer film contributing to the high conductivity (≈102 S cm?1). In addition, it is found that the ionic liquid works as a pressure medium at the highly charged state, leading to significant enhancement of conductivity. By combining both gating and pressuring, a crossover of transport properties is observed from one‐dimensional to three‐dimensional hopping, as the clear indication that the polymer film has accessed the regime adjacent to the transition region between insulator and metal. These results show an effective way of utilizing pressure effect of ionic liquid as a new degree of freedom in controlling transport of polymers, a method having strong potential to be generalized for even broader range of materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号