首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This letter describes a radiometric technique to evaluate the turbidity (suspended solids concentration, SSC) of terrestrial waters (e.g. irrigation canals, creeks, ponds, streams and small rivers) using a hand‐held spectropolarimeter. A field experiment was conducted using a container of water with different turbidity levels. The intensity and degree of polarization of sunlight reflected from the water were measured in visible, near and short‐wave infrared bands. The intensity of the reflected light and its non‐polarized component were divided by the incident sunlight intensity to derive the radiant coefficient (Q, %), and the non‐polarized radiant coefficient (Qnp, %), respectively. The Q and Qnp in several wavelength bands were regressed against measured values of SSC. The multiple regression model using multi‐band Qnp is superior to a similar model using multi‐band Q because the Qnp model does not need viewing angles as explanatory variables, whereas the model using Q requires these angles. A result from preliminary testing in real streams is also presented.  相似文献   

2.
Abstract— The perceived colors of an image seen on a self‐luminous display are affected by ambient illumination. The ambient light reflected from the display faceplate is mixed with the image‐forming light emitted by the display. In addition to this direct physical effect of viewing flare, ambient illumination causes perceptual changes by affecting the adaptation state of the viewer's visual system. This paper first discusses these effects and how they can be compensated, outlining a display system able to adjust its output based on prevailing lighting conditions. The emphasis is on compensating for the perceptual effects of viewing conditions by means of color‐appearance modeling. The effects of varying the degree of chromatic adaptation parameter D and the surround compensation parameters c and Nc of the CIECAM97s color‐appearance model were studied in psychophysical experiments. In these memory‐based paired comparison experiments, the observers judged the appearance of images shown on an LCD under three different ambient‐illumination conditions. The dependence of the optimal parameter values on the level of ambient illumination was evident. The results of the final experiment, using a category scaling technique, showed the benefit of using the color‐appearance model with the optimized parameters in compensating for the perceptual changes caused by varying ambient illumination.  相似文献   

3.
Misalignment in stereo images leads to 3D discomfort, but the visual tolerance for disparities varies with viewing environment and stimulus. The aim of the study was twofold: first, to assess if vertical disparity tolerance (VDT) could be a reliable indicator of 3D visual comfort under certain restrained condition when vertical disparity is induced; second, to be able to predict how viewing conditions can affect visual comfort using an analytical model. Two viewing condition parameters were considered: luminance and stimulus angular size. The study was carried out in two experiments involving 17 subjects. In Experiment 1, visual comfort and vertical disparity tolerance were measured by a series of psychophysical tests for different stimulus angular sizes and luminance. Based on a regression analysis of this data, a model was proposed to estimate VDT as a function of luminance and stimulus angular size. In Experiment 2, a validation test was carried out to assess the quality of the model. Results confirm that for given viewing conditions (luminance, angular size, induced vertical disparity), the visual comfort measured is in agreement with the one predicted (ρ = 1.0008, p = 0.0026). VDT is a recognized reliable indicator of visual comfort due to vertical disparity and the model can be used to predict visual comfort for given viewing conditions.  相似文献   

4.
An array detector was employed to characterize the crosstalk and contrast ratio uniformity of three‐dimensional (3D) displays. The measurement method is described and demonstrated on a stereoscopic display with passive glasses. The resulting high resolution spatial uniformity maps enable a comprehensive statistical characterization of the display and provide a useful visual assessment tool. The statistical uniformity data are used to evaluate the crosstalk dependence on viewing conditions (such as viewing distance), and show the degradation in display performance that could not be captured with a discrete spot measurement. The measurement method was also employed to examine the influence of crosstalk on contrast ratio. It is shown that for some 3D displays, the crosstalk uniformity can dominate the perceived contrast. A metric is proposed that defines the maximal crosstalk contribution to the perceived contrast for 3D images with small features. The summary parameters extracted from the uniformity maps can be utilized to define the boundary viewing conditions needed to maintain minimum image quality.  相似文献   

5.
Abstract— A simulation method based on measured liquid‐crystal responses and human‐vision properties was proposed to characterize the motion blur of LCDs. A perceptual experiment was implemented to validate the simulation model within different viewing conditions by changing the visual angle. The results indicate that the smaller visual angle of the mobile display has no statistic significant effect on smooth‐pursuit eye tracking when perceiving a moving block on a screen. The calculation process of quantitative metric was presented based on the measured light behavior and the simulation model. In the end, the different motion‐blur reduction approaches were evaluated for mobile LCDs.  相似文献   

6.
Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers, probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Cross-validation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a wide variety of flux tower data as the training data sets to obtain more accurate results.In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub-pixel cropland components.  相似文献   

7.
Abstract— Nowadays, low‐contrast viewing of LC displays (LCDs) occurs very often, which includes the viewing of mobile LCDs at high ambient illumination and the viewing of LCDs at low‐power mode. These cases result in low‐content visibility and low contrast, leading to an unpleasant viewing experience. In this paper, a technique to improve the perceived contrast and visibility of images at low‐contrast viewing conditions is proposed. The proposed approach enhances image brightness with content and ambient adaptive image brightening and highlights visual parts and boundaries with non‐photorealistic rendering. The proposed technique enables longer battery life for mobile LC devices and makes mobile LC devices viewable at high ambient illumination. It also enables TVs with extreme low‐power consumption and smart‐grid responsive TVs.  相似文献   

8.
Abstract— To understand actual viewing conditions at home is important for TV design. And the preferred luminance level of LCD TVs under actual viewing conditions is also important in order to obtain both good picture quality and low power consumption. The actual viewing conditions of households and the preferred luminance levels was investigated. In a field test of 83 households, the display luminance, screen illuminance, and viewing locations were measured on site. In laboratory experiments, young and elderly subjects adjusted the luminance of an LCD‐TV screen to their preferred levels under different screen illuminance levels, angular screen sizes, and average luminance levels (ALL) of the images. As a result, two equations, which represent the preferred luminance level of LCD‐TV screens corresponding to different viewing conditions for young and elderly subjects were obtained. When the ALL of the images was 25% and the screen illuminance and angular screen size were set at 100 lx and 20°, respectively, the preferred luminance was 1 60 cd/m2 for the young subjects and 248 cd/m2 for the elderly subjects. By using the setting of the preferred luminance of an LCD TV under actual viewing conditions, it is possible to conserve energy consumption.  相似文献   

9.
Abstract— This study aims to develop an image‐color‐quality (ICQ) model for a 2‐in. mobile transmissive liquid‐crystal display (LCD). A hypothetical framework for ICQ judgment was made to visually assess ICQ based the cognitive processes of the human visual system (HVS), and then an illumination adaptive ICQ model applicable for various surround conditions was developed. The memory color reproduction ratio (MCRR) of a locally adapted region of interest in a complex image reproduced on a mobile display was first computed. The colorfulness index and luminance contrast for all of the pixels in the image were then calculated by a global adaptation process. Finally, an ICQ model including all of the three attributes was developed under dark conditions using an assessed set of psychophysical data. The model gave more accurate performance than the mean accuracy for all of the observers. It was also visually tested under three different outdoor conditions, including overcast, bright, and very bright conditions, and the illuminance level range was from 7000 to 35,000 to 70,000 lx. The effect of outdoor illumination could be quantified as an exponential decay function and the ICQ model could be extended to cover a wide variety of outdoor illuminations conditions.  相似文献   

10.
11.
The visual task of detecting an approaching vehicle was modeled with a neurophysiologically motivated computational vision model, the National Automotive Center-visual perception model (NAC-VPM). The scientific literature documenting age-related changes in early vision was reviewed in relationship to the components of the NAC-VPM, and the model was fit to laboratory data from older observers. The model fit the older observers' data adequately, particularly when the data was partitioned into subsets based on viewing conditions. Model fits were compared to calibrations based on younger observers' data. The calibrations based on older observers were substantially different from calibrations based on younger observers, indicating that the model can capture age-related differences in visual perception. When calibrated to the older adults' data, the model successfully predicted conditions under which vehicle detection was particularly difficult for older adults  相似文献   

12.
This paper describes the formulation and development of a mathematical model for high-performance robust controller design techniques, based on a complete identification for control procedure, of an irrigation main canal pool (true plant), which is characterized by the exhibition of large variations in its dynamic parameters when the discharge regime changes in the operating range [Qmin, Qmax]. Real-time field data has been used. Four basic steps of the proposed procedure have been defined in which all the stages, from the design of the experiments to the model validation, are considered. This procedure not only delivers a nominal model of the true plant, but also a reliable estimate of its model uncertainty region bounded by the true plant models under minimum and maximum operating discharge regimes (limit operating models). The model uncertainty set, defined by the nominal model and its uncertainty region, is characterized by its being as tight as possible to the true irrigation main canal pool. The obtained results are very promising since this kind of models facilitates the design of robust controllers, which allow improving the operability of irrigation main canal pools and also substantially reduce water losses.  相似文献   

13.
This article analyzes the bias dependence of gate‐drain capacitance (Cgd) and gate‐source capacitance (Cgs) in the AlGaN/GaN high electron mobility transistors under a high drain‐to‐source voltage (Vds) from the perspective of channel shape variation, and further simplifies Cgd and Cgs to be gate‐to‐source voltage (Vgs) dependent only at high Vds. This method can significantly reduce the number of parameters to be fitted in Cgd and Cgs and therefore lower the difficulty of model development. The Angelov capacitance models are chosen for verifying the effectiveness of simplification. Good agreement between simulated and measured small‐signal S‐parameters, large‐signal power sweep, and power contours comprehensively proves the accuracy of this simplification method.  相似文献   

14.
Abstract— A wide‐view transflective liquid‐crystal display (LCD) capable of switching between transmissive and reflective modes in response to different ambient‐light conditions is proposed. This transflective LCD adopts a single‐cell‐gap multi‐domain vertical‐alignment (MVA) cell that exhibits high contrast ratio, wide‐viewing angle, and good light transmittance (T) and reflectance (R). Under proper cell optimization, a good match between the VT and VR curves can also be obtained for single‐gamma‐curve driving.  相似文献   

15.
The conflict between vergence and accommodation is the main perceptual factors contributing to visual discomfort when viewing autostereoscopic display. The key factors relevant to the accommodation and vergence are the ambient illumination and the contrast. The current study was a 2 × 3 × 3 mixed design comparing VFSI and VIMS symptoms between 2D and 3D video clips with three contrast levels under three ambient illumination levels on the autostereoscopic display. Twenty participants were required to evaluate the degree of discomfort by filing out questionnaires after watching those video clips. According to the result analysis, the 3D viewing participants reported more severe symptoms compared to 2D. The moderate contrast conditions were found to be the optimum for viewing comfort. The difference between VFSI and VIMS symptoms become larger with increasing contrast. The results also suggested the optimum 3D illumination condition should not be too high to effectively relieve visual discomfort. VIMS symptoms were more sensitive to the changes in ambient illumination than VFSI. Moreover, significant interaction between contrast and ambient illumination was found. Participants felt the most comfortable in the combination effect of moderate level of contrast and the high level of ambient illumination.  相似文献   

16.
In this study, we compared visual comfort in 2D/3D modes of the pattern retarder (PR) and shutter glasses (SG) stereoscopic displays by changing viewing factors and image contents. The viewing factors include ambient illuminance/monitor luminance/background luminance and image contents mainly are determined with different disparity limits. The degrees of 2D/3D visual comfort were investigated by using various combinations of ambient illuminance, monitor luminance, background luminance, and disparity limit. A series of psychological experiments were also performed to compare 2D and 3D viewing experiences for the passive PR and active SG stereoscopic displays and to discover more comfortable conditions under various variable combinations. The experiment results show that the various variable combinations affecting visual comfort in the passive PR and active SG stereoscopic displays were significantly different. Finally, we suggest more comfortable conditions of viewing 2D and 3D images for the PR and SG stereoscopic displays.  相似文献   

17.
An algebraic eddy viscosity model, based on a new length scale has been developed. The model proposes the eddy viscosity as a solution of a quartic (Q 4) equation. The turbulent length scale for attached and separated flows is defined by employing a vorticity functionF =yD introduced in the Baldwin-Lomax model. The algebraic-Q 4 eddy viscosity model was incorporated into Navier-Stokes code and tested for complex transonic airfoil flows with separation. The results are compared with the experimental data.  相似文献   

18.
The V–Zn system was investigated by a combination of CALPHAD modeling with key experiments and first-principles calculations. Based on a critical literature review, one diffusion couple and nine alloys were designed to reinvestigate the stabilities of the phases reported in the literature. The samples were annealed and cooled under different conditions, followed by examination with X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray spectrometry. Four phases ((V), (Zn), V Zn3 and V 4Zn5) were confirmed to exist in the phase diagram, while V Zn16 and V 3Zn were not observed. By means of first-principles calculations, the enthalpies of formation for V Zn3 and V 4Zn5 were computed to be −4.55 kJ mol-atoms−1 and −4.58 kJ mol-atoms−1, respectively. A set of self-consistent thermodynamic parameters for this system was obtained by considering the reliable experimental phase diagram data and the enthalpies of formation acquired from first-principles calculations. The calculated V–Zn phase diagram agrees well with the experimental data.  相似文献   

19.
The inherent advantages of reflective e‐paper displays (EPD) – wide viewing direction range and excellent readability even under bright sunlight – can be extended into low‐light conditions by the addition of an integrated lighting unit (ILU) such as a front light. A methodology for predicting the viewing direction dependence of ambient contrast and color from display measurements and illumination models is here applied to reflective EPD where the ILU is switched on. The predictions can be used to optimize task lighting. The ILU improves the indoor performance of EPD without compromising their superior daylight performance.  相似文献   

20.
This paper develops models for diffusion coefficient prediction to provide parameters for atomic mobility databases and to assist material design in a multi-scale simulation framework for face-centered-cubic (fcc) alloys. Models of impurity-diffusion activation energy (QI) and self-diffusion activation energy (Qs) are trained using machine-learning with experimental diffusion data and basic physical properties. The values of Qs in body-centered cubic (bcc), fcc and hexagonal close-packed (hcp) can be well-predicted using melting temperature, electronic configuration, atomic properties and elasticity parameters. Estimates of QI in fcc metallic systems calculated using a model with six features agreed well with experimental data. Compared with previous models of Qs and QI, the newly developed models exhibit higher coefficients of determination (R2) and significantly lower mean absolute errors. The self- and impurity-diffusion coefficients in fcc metallic systems can be simulated by these models. The models are also successfully applied during the assessment process of the Ni–Ti binary atomic mobility database. Thus, the developed models provide an easy and reliable method for estimating the self- or impurity-diffusion coefficients of fcc alloys when they are unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号