首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hierarchical nanocomposites rationally designed in component and structure, are highly desirable for the development of lithium‐ion batteries, because they can take full advantages of different components and various structures to achieve superior electrochemical properties. Here, the branched nanocomposite with β‐MnO2 nanorods as the back‐bone and porous α‐Fe2O3 nanorods as the branches are synthesized by a high‐temperature annealing of FeOOH epitaxially grown on the β‐MnO2 nanorods. Since the β‐MnO2 nanorods grow along the four‐fold axis, the as‐produced branches of FeOOH and α‐Fe2O3 are aligned on their side in a nearly four‐fold symmetry. This synthetic process for the branched nanorods built by β‐MnO2/α‐Fe2O3 is characterized. The branched nanorods of β‐MnO2/α‐Fe2O3 present an excellent lithium‐storage performance. They exhibit a reversible specific capacity of 1028 mAh g?1 at a current density of 1000 mA g?1 up to 200 cycles, much higher than the building blocks alone. Even at 4000 mA g?1, the reversible capacity of the branched nanorods could be kept at 881 mAh g?1. The outstanding performances of the branched nanorods are attributed to the synergistic effect of different components and the hierarchical structure of the composite. The disclosure of the correlation between the electrochemical properties and the structure/component of the nanocomposites, would greatly benefit the rational design of the high‐performance nanocomposites for lithium ion batteries, in the future.  相似文献   

2.
Novel composites composed of α‐Fe2O3 tetrakaidecahedrons and graphene oxide have been easily fabricated and demonstrated to be efficient photoelectrodes for photoelectrochemical water splitting reaction with superior photocurrent response. α‐Fe2O3 tetrakaidecahedrons are facilely synthesized in a green manner without any organic additives and then modified with graphene oxide. The morphological and structural properties of α‐Fe2O3/graphene composite are intensively investigated by several means, such as X‐ray diffraction, field‐emission scanning electron microscope, transmission electron microscope, X‐ray photoelectron spectroscopy, Fourier Transform infrared spectroscopy, and Raman spectroscopy. The tetrakaidecahedronal hematite particles have been indicated to be successfully coupled with graphene oxide. Systematical photoelectrochemical and impedance spectroscopy measurements have been carried out to investigate the favorable performance of α‐Fe2O3/graphene composites, which are found to be effective photoanodes with rapid, steady, and reproducible feature. The coupling of graphene with α‐Fe2O3 particles has greatly enhanced the photoelectrochemical performance, resulting in higher photocurrent and lower onset potential than that of pure α‐Fe2O3. This investigation has provided a feasible method to synthesize α‐Fe2O3 tetrakaidecahedron and fabricate an efficient α‐Fe2O3/graphene photoelectrode for photoelectrochemical water oxidation, suggesting a promising route to design noble metal free semiconductor/graphene photocatalysts.  相似文献   

3.
Growth of aligned and uniform α‐Fe2O3 nanowire (NW) arrays has been achieved by a vapor–solid process. The experimental conditions, such as type of substrate, local growth and geometrical environment, gas‐flow rate, and growth temperature, under which the high density α‐Fe2O3 NW arrays can be grown by a vapor–solid route via the tip‐growth mechanism have been systematically investigated. The density of the α‐Fe2O3 NWs can be enhanced by increasing the concentration of Ni atoms inside the alloy substrate. The synthesized temperature can be as low as 400 °C. Fe3O4 NWs can be produced by converting α‐Fe2O3 NWs in a reducing atmosphere at 450 °C. The transformation of phase and structure have been observed by in situ transmission electron microscopy. The magnetic and field‐emission properties of the NWs indicate their potential applications in nanodevices.  相似文献   

4.
Naked magnetically recyclable mesoporous Au–γ‐Fe2O3 clusters, combining the inherent magnetic properties of γ‐Fe2O3 and the high catalytic activity of Au nanoparticles (NPs), are successfully synthesized. Hydrophobic Au–Fe3O4 dimers are first self‐assembled to form sub‐micrometer‐sized Au–Fe3O4 clusters. The Au–Fe3O4 clusters are then coated with silica, calcined at 550 °C, and finally alkali treated to dissolve the silica shell, yielding naked‐Au–γ‐Fe2O3 clusters containing Au NPs of size 5–8 nm. The silica protection strategy serves to preserve the mesoporous structure of the clusters, inhibit the phase transformation from γ‐Fe2O3 to α‐Fe2O3, and prevent cluster aggregation during the synthesis. For the reduction of p‐nitrophenol by NaBH4, the activity of the naked‐Au–γ‐Fe2O3 clusters is ≈22 times higher than that of self‐assembled Au–Fe3O4 clusters. Moreover, the naked‐Au–γ‐Fe2O3 clusters display vastly superior activity for CO oxidation compared with carbon‐supported Au–γ‐Fe2O3 dimers, due to the intimate interfacial contact between Au and γ‐Fe2O3 in the clusters. Following reaction, the naked‐Au–γ‐Fe2O3 clusters can easily be recovered magnetically and reused in different applications, adding to their versatility. Results suggest that naked‐Au–γ‐Fe2O3 clusters are a very promising catalytic platform affording high activity. The strategy developed here can easily be adapted to other metal NP–iron oxide systems.  相似文献   

5.
Silicon is one of the promising materials for solar water splitting and hydrogen production; however, it suffers from two key factors, including the large external potential required to drive water splitting reactions at its surface and its instability in the electrolyte. In this study, a successful fabrication of novel p‐Si/n‐SnO2/n‐Fe2O3 core/shell/shell nanowire (css‐NW) arrays, consisting of vertical Si NW cores coated with a thin SnO2 layer and a dense Fe2O3 nanocrystals (NCs) shell, and their application for significantly enhanced solar water reduction in a neutral medium is reported. The p‐Si/n‐SnO2/n‐Fe2O3 css‐NW structure is characterized in detail using scanning, transmission, and scanning transmission electron microscopes. The p‐Si/n‐SnO2/n‐Fe2O3 css‐NWs show considerably improved photocathodic performances, including higher photocurrent and lower photocathodic turn‐on potential, compared to the bare p‐Si NWs or p‐Si/n‐SnO2 core/shell NWs (cs‐NWs), due to increased optical absorption, enhanced charge separation, and improved gas evolution. As a result, photoactivity at 0 V versus reversible hydrogen electrode and a low onset potential in the neutral solution are achieved. Moreover, p‐Si/n‐SnO2/n‐Fe2O3 css‐NWs exhibit long‐term photoelectrochemical stability due to the Fe2O3 NCs shell well protection. These results reveal promising css‐NW photoelectrodes from cost‐effective materials by facile fabrication with simultaneously improved photocathodic performance and stability.  相似文献   

6.
There has been significant progress in the field of semiconductor photocatalysis, but it is still a challenge to fabricate low‐cost and high‐activity photocatalysts because of safety issues and non‐secondary pollution to the environment. Here, 2D hexagonal nanoplates of α‐Fe2O3/graphene composites with relatively good distribution are synthesized for the first time using a simple, one‐step, template‐free, hydrothermal method that achieves the effective reduction of the graphene oxide (GO) to graphene and intimate and large contact interfaces of the α‐Fe2O3 nanoplates with graphene. The α‐Fe2O3/graphene composites showed significantly enhancement in the photocatalytic activity compared with the pure α‐Fe2O3 nanoplates. At an optimal ratio of 5 wt% graphene, 98% of Rhodamine (RhB) is decomposed with 20 min of irradiation, and the rate constant of the composites is almost four times higher than that of pure α‐Fe2O3 nanoplates. The decisive factors in improving the photocatalytic performance are the intimate and large contact interfaces between 2D hexagonal α‐Fe2O3 nanoplates and graphene, in addition to the high electron withdrawing/storing ability and the highconductivity of reduced graphene oxide (RGO) formed during the hydrothermal reaction. The effective charge transfer from α‐Fe2O3 nanoplates to graphene sheets is demonstrated by the significant weakening of photoluminescence in α‐Fe2O3/graphene composites.  相似文献   

7.
Hematite (α‐Fe2O3) as a photoanode material for photoelectrochemical (PEC) water splitting suffers from the two problems of poor charge separation and slow water oxidation kinetics. The construction of p–n junction nanostructures by coupling of highly stable Co3O4 in aqueous alkaline environment to Fe2O3 nanorod arrays with delicate energy band positions may be a challenging strategy for efficient PEC water oxidation. It is demonstrated that the designed p‐Co3O4/n‐Fe2O3 junction exhibits superior photocurrent density, fast water oxidation kinetics, and remarkable charge injection and bulk separation efficiency (ηinj and ηsep), attributing to the high catalytic behavior of Co3O4 for the oxygen evolution reaction as well as the induced interfacial electric field that facilitates separation and transportation of charge carriers. In addition, a cocatalyst of cobalt phosphate (Co‐Pi) is introduced, which brings the PEC performance to a high level. The resultant Co‐Pi/Co3O4/Ti:Fe2O3 photoanode shows a photocurrent density of 2.7 mA cm?2 at 1.23 VRHE (V vs reversible hydrogen electrode), 125% higher than that of the Ti:Fe2O3 photoanode. The optimized ηinj and ηsep of 91.6 and 23.0% at 1.23 VRHE are achieved on Co‐Pi/Co3O4/Ti:Fe2O3, respectively, corresponding to the 70 and 43% improvements compared with those of Ti:Fe2O3. Furthermore, Co‐Pi/Co3O4/Ti:Fe2O3 shows a low onset potential of 0.64 VRHE and long‐time PEC stability.  相似文献   

8.
Nanoflakes of α‐Fe2O3 were prepared on Cu foil by using a thermal treatment method. The nanoflakes were characterized by X‐ray diffraction, scanning electron microscopy, high‐resolution transmission electron microscopy, and Raman spectroscopy. The reversible Li‐cycling properties of the α‐Fe2O3 nanoflakes have been evaluated by cyclic voltammery, galvanostatic discharge–charge cycling, and impedance spectral measurements on cells with Li metal as the counter and reference electrodes, at ambient temperature. Results show that Fe2O3 nanoflakes exhibit a stable capacity of (680 ± 20) mA h g–1, corresponding to (4.05 ± 0.05) moles of Li per mole of Fe2O3 with no noticeable capacity fading up to 80 cycles when cycled in the voltage range 0.005–3.0 V at 65 mA g–1 (0.1 C rate), and with a coulombic efficiency of > 98 % during cycling (after the 15th cycle). The average discharge and charge voltages are 1.2 and 2.1 V, respectively. The observed cyclic voltammograms and impedance spectra have been analyzed and interpreted in terms of the ‘conversion reaction' involving nanophase Fe0–Li2O. The superior performance of Fe2O3 nanoflakes is clearly established by a comparison of the results with those for Fe2O3 nanoparticles and nanotubes reported in the literature.  相似文献   

9.
Fiber‐shaped aqueous lithium‐ion capacitors (FALICs) featured with high energy and power densities together with outstanding safety characteristics are emerging as promising electrochemical energy‐storage devices for future portable and wearable electronics. However, the lack of high‐capacitance fibrous anodes is a major bottleneck to achieve high performance FALICs. Here, hierarchical MoS2@α‐Fe2O3 core–shell heterostructures consisting of spindle‐shaped α‐Fe2O3 cores and MoS2 nanosheet shells on a carbon nanotube fiber (CNTF) are successfully fabricated. Originating from the unique core/shell architecture and prominent synergetic effects for multi‐components, the resulting MoS2@α‐Fe2O3/CNTF anode delivers a remarkable specific capacitance of 2077.5 mF cm?2 (554.0 F cm?3) at 2 mA cm?2, substantially outperforming most of the previously reported fibrous anode materials. Further density functional theory calculations reveal that the MoS2@α‐Fe2O3 nano‐heterostructure possesses better electrical conductivity and stronger adsorption energy of Li+ than those of the individual MoS2 and α‐Fe2O3. By paring with the self‐standing LiCoO2/CNTF battery‐type cathode, a prototype quasi‐solid‐state FALIC with a maximum operating voltage of 2.0 V is constructed, achieving impressive specific capacitance (253.1 mF cm?2) and admirable energy density (39.6 mWh cm?3). Additionally, the newly developed FALICs can be woven into the flexible textile to power wearable electronics. This work presents a novel effective strategy to design high‐performance anode materials for next‐generation wearable ALICs.  相似文献   

10.
In this study, an amorphous Li2CO3‐coated nanocrystalline α‐Fe2O3 hierarchical structure is synthesized for the first time using a facile one‐step mechanochemical process at room temperature, taking advantage of the concurrence of repeated fracture‐cold welding of material's particles and a gas‐solid redox reaction. The conformal coating and hierarchical structure significantly increase the cycling durability and rate capability. Typically, a 1–3 nm thick amorphous Li2CO3 layer is conformally coated on Fe2O3 nanocrystallines (≈10 nm in size) that form hierarchically aggregated particles 400–800 nm in size by ball milling α‐Fe2O3 with LiH in CO2. The prepared Li2CO3‐coated nanocrystalline α‐Fe2O3 exhibits highly stable long‐term cyclability as it delivers a reversible capacity of 975 mAh g?1 with 99% of retention after 400 cycles at 100 mA g?1. At a high rate of 3000 mA g?1, its reversible capacity still remains at 537 mAh g?1, superior to the uncoated counterpart (311 mAh g?1). Moreover, amorphous Li2O and Li2CO3 coatings are also similarly produced on Fe2O3 and NiO nanocrystallines, respectively, representing the general applicability of this mechanochemical approach.  相似文献   

11.
A series of uniform rare‐earth‐doped hematite (α‐Fe2O3) nanoparticles are synthesized by a facile hydrothermal strategy. In a typical case of gadolinium (Gd)‐doped α‐Fe2O3, the morphology and chemical composition can be readily tailored by tuning the initial proportion of Gd3+/Fe3+ sources. As a result, the products are observed to be stretched into more elongated shapes with an increasing dopant ratio. As a benefit of such an elongated morphological feature and Gd3+ ions of larger effective magnetic moment than Fe3+, the doped product with the highest ratio of Gd3+ at 5.7% shows abnormal ferromagnetic features with a remnant magnetization of 0.605 emu g?1 and a coercivity value of 430 Oe at 4 K. Density of states calculations also reveal the increase of total magnetic moment induced by Gd3+ dopant in α‐Fe2O3 hosts, as well as possible change of magnetic arrangement. As‐synthesized Gd‐doped α‐Fe2O3 nanoparticles are probed as contrast agents for T1‐weighted magnetic resonance imaging, achieving a remarkable enhancement effect for both in vitro and in vivo tests.  相似文献   

12.
All‐inorganic metal‐halide perovskites CsPbX3 (X = Cl, Br, I) exhibit higher stability than their organic–inorganic hybrid counterparts, but the thermodynamically instable perovskite α phase at room temperature of CsPbI3 restricts the practical optoelectronic applications. Although the stabilization of α‐CsPbI3 polycrystalline thin films is extensively studied, the creation of highly crystalline micro/nanostructures of α‐CsPbI3 with large grain size and suppressed grain boundary remains challenging, which impedes the implementations of α‐CsPbI3 for lateral devices, such as photoconductor‐type photodetectors. In this work, stable α‐CsPbI3 perovskite nanowire arrays are demonstrated with large grain size, high crystallinity, regulated alignment, and position by controlling the dewetting dynamics of precursor solution on an asymmetric‐wettability topographical template. The correlation between the higher photoluminescence (PL) intensity and longer PL lifetime indicates the nanowires exhibit stable α phase and suppressed trap density. The preferential (100) orientation is characterized by discrete diffraction spots in grazing incidence wide‐angle scattering patterns, suggesting the long‐range crystallographic order of these nanowires. Based on these high‐quality nanowire arrays, highly sensitive photodetectors are realized with a responsivity of 1294 A W?1 and long‐term stability with 90% performance retention after 30‐day ambient storage.  相似文献   

13.
The ?‐Fe2O3 phase is commonly considered an intermediate phase during thermal treatment of maghemite (γ‐Fe2O3) to hematite (α‐Fe2O3). The routine method of synthesis for ?‐Fe2O3 crystals uses γ‐Fe2O3 as the source material and requires dispersion of γ‐Fe2O3 into silica, and the obtained ?‐Fe2O3 particle size is rather limited, typically under 200 nm. In this paper, by using a pulsed laser deposition method and Fe3O4 powder as a source material, the synthesis of not only one‐dimensional Fe3O4 nanowires but also high‐yield ?‐Fe2O3 nanowires is reported for the first time. A detailed transmission electron microscopy (TEM) study shows that the nanowires of pure magnetite grow along [111] and <211> directions, although some stacking faults and twins exist. However, magnetite nanowires growing along the <110> direction are found in every instance to accompany a new phase, ?‐Fe2O3, with some micrometer‐sized wires even fully transferring to ?‐Fe2O3 along the fixed structural orientation relationship, (001) ∥ (111), [010] ∥ <110>. Contrary to generally accepted ideas regarding epsilon phase formation, there is no indication of γ‐Fe2O3 formation during the synthesis process; the phase transition may be described as being from Fe3O4 to ?‐Fe2O3, then to α‐Fe2O3. The detailed structural evolution process has been revealed by using TEM. 120° rotation domain boundaries and antiphase boundaries are also frequently observed in the ?‐Fe2O3 nanowires. The observed ?‐Fe2O3 is fundamentally important for understanding the magnetic properties of the nanowires.  相似文献   

14.
Despite significant advances in iron oxide nanoparticles, it is still a challenge to synthesize regular polyhedral single‐crystalline α‐Fe2O3 particles because the surface energies of several low‐index planes are fairly similar. In the work presented here, well‐dispersed and single‐crystalline dodecahedral and octodecahedral α‐Fe2O3 particles are synthesized by a facile hydrothermal method with the aid of F? anions. The crystalline structure of the polyhedral particles is disclosed by various characterization techniques. The dodecahedral particles are of hexagonal bipyramidal shape and enclosed by twelve equivalent (101) planes. The octodecahedral particles are formed by adding six equivalent (111) planes on the two tips of a dodecahedral particle, that is, they are enclosed by twelve (101) planes and six (111) planes. The existence of F? anions plays a crucial role in the control of polyhedral particle shape. The function of F? anions in the shape formation of the polyhedral particles is proposed as follows: 1) A high concentration of exposed Fe3+ cations induces preferential adsorption of F? anions on the (100) plane and leads to the slowest growth along the [100] direction. When the concentration of F? anions is higher than 24 mM , a stable speed ratio of growth along the [001] and [100] directions results in the exposure of (101) planes. 2) With a lower concentration of F? anions, six symmetrical (111) planes with low concentration of exposed Fe3+ cations are present at the tops of a dodecahedral particle to form an octodecahedron. Furthermore, the dodecahedral and octodecahedral α‐Fe2O3 particles show much stronger magnetism than the previously reported α‐Fe2O3 nanostructures, having coercivities of 4986 Oe and 6512 Oe, respectively. Such high coercivities are attributed to a large local magnetic anisotropy, which might be induced by the polyhedron with equivalent crystallographic planes and/or the presence of F? anions.  相似文献   

15.
High‐temperature powder neutron diffraction experiments are conducted around the reported β–γ phase transition (~930 °C) in BiFeO3. The results demonstrate that while a small volume contraction is observed at the transition temperature, consistent with an insulator–metal transition, both the β‐ and γ‐phase of BiFeO3 exhibit orthorhombic symmetry; i.e., no further increase of symmetry occurs during this transition. The γ‐orthorhombic phase is observed to persist up to a temperature of approximately 950 °C before complete decomposition into Bi2Fe4O9 (and liquid Bi2O3), which subsequently begins to decompose at approximately 960 °C.  相似文献   

16.
Uniform SnO2 nanorod arrays have been deposited at low temperature by plasma‐enhanced chemical vapor deposition (PECVD). ZnO surface modification is used to improve the selectivity of the SnO2 nanorod sensor to H2 gas. The ZnO‐modified SnO2 nanorod sensor shows a normal n‐type response to 100 ppm CO, NH3, and CH4 reducing gas whereas it exhibits concentration‐dependent n–p–n transitions for its sensing response to H2 gas. This abnormal sensing behavior can be explained by the formation of n‐ZnO/p‐Zn‐O‐Sn/n‐SnO2 heterojunction structures. The gas sensors can be used in highly selective H2 sensing and this study also opens up a general approach for tailoring the selectivity of gas sensors by surface modification.  相似文献   

17.
An ultrathin cobalt–manganese (Co‐Mn) nanosheet, consisting of amorphous Co(OH)x layers and ultrasmall Mn3O4 nanocrystals, is designed as an efficient co‐catalyst on an α‐Fe2O3 film for photoelectrochemical (PEC) water oxidation. The uniformly distributed Co‐Mn nanosheets lead to a remarkable 2.6‐fold enhancement on the photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) and an impressive cathodic shift (≈200 mV) of onset potential compared with bare α‐Fe2O3 film. Furthermore, the decorated photoanode exhibits a prominent resistance against photocorrosion with excellent stability for over 10 h. Detailed mechanism investigation manifests that incorporation of Mn sites in the nanosheets could create electron donation to Co sites and facilitate the activation of the OH group, which drastically increases the catalytic activities for water oxidation. These findings provide valuable guidance for designing high‐performance co‐catalysts for PEC applications and open new avenues toward controlled fabrication of mixed metallic composites.  相似文献   

18.
A new transparent p‐type oxide semiconductor (POS) is reported, Cu2SnS3‐Ga2O3, having high Hall mobility of 36.22 cm2 V−1s−1, and high work function of 5.17 eV. The existence of Cu2SnS3 and Ga2O3 phases in the film is confirmed by X‐ray photoelectron spectroscopy results and the Cu2SnS3 shows polycrystalline structure according to Raman spectrum and X‐ray diffraction analysis. The transparent Cu2SnS3‐Ga2O3 exhibits the carrier concentration of 5.86 × 1016 cm−3, and electrical resistivity of 1.94 Ω·cm. The transparent POS is applied to green quantum light‐emitting diodes (QLEDs) as a hole injection layer (HIL) because of its high work function. The QLED exhibits the maximum current efficiency of 51.72 cd A−1, power efficiency of 31.97 lm W−1, and external quantum efficiency (EQE) of 14.93%, which are much higher than the QLED using polyethylene dioxythophene:poly(styrenesulfonate) HIL exhibiting current efficiency of 42.66 cd A−1, power efficiency of 20.33 lm W−1, and EQE of 12.36%. The Cu2SnS3‐Ga2O3 developed in this work can be widely used as a transparent and conductive p‐type oxide for thin‐film devices.  相似文献   

19.
The effect of space accessible to electrolyte ions on the electrochemical activity is studied for a system of transition‐metal hydroxide‐based pseudocapacitors. Layered α‐Co(OH)2 with various intercalated anions is used as a model material. Three types of layered α‐Co(OH)2 with intercalated anions of dodecyl sulfate, benzoate, or nitrate, are prepared by a simple reflux and an anion‐exchange process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations and X‐ray diffraction (XRD) data show the formation of layered α‐Co(OH)2 nanocones with interlayer spacing between adjacent Co(OH)2 single sheets of 1.6, 0.7, and 0.09 nm, corresponding to the anions as listed above. Electrochemical characterization reveals that interlayer space has a great effect on the electrochemical activity of α‐Co(OH)2 nanocones as an electrode material. For the interlayer spacing of 1.6 nm, in the case of dodecyl sulfate‐intercalated α‐Co(OH)2, the Faradaic reaction takes place more adequately than for benzoate‐ and nitrate‐intercalated α‐Co(OH)2. As a result, a higher specific capacitance and better cycling stability is obtained for the dodecyl sulfate‐intercalated α‐Co(OH)2. The electrochemical activity obviously reduces when the interlayer space decreases to 0.7 nm. Our results suggest the importance of rational designing the interlayer space of layered transition metal hydroxides for high‐performance pseudocapacitors.  相似文献   

20.
High performance of electrochemical energy storage devices depends on the smart structure engineering of electrodes, including the tailored nanoarchitectures of current collectors and subtle hybridization of active materials. To improve the anode supercapacitive performance of Fe2O3 for high‐voltage asymmetric supercapacitors, here, a hybrid core‐branch nanoarchitecture is proposed by integrating Fe2O3 nanoneedles on ultrafine Ni nanotube arrays (NiNTAs@Fe2O3 nanoneedles). The fabrication process employs a bottom‐up strategy via a modified template‐assisted method starting from ultrafine ZnO nanorod arrays, ensuring the formation of ultrafine Ni nanotube arrays with ultrathin tube walls. The novel developed NiNTAs@Fe2O3 nanoneedle electrode is demonstrated to be a highly capacitive anode (418.7 F g?1 at 10 mV s?1), matching well with the similarly built NiNTAs@MnO2 nanosheet cathode. Contributed by the efficient electron collection paths and short ion diffusion paths in the uniquely designed anode and cathode, the asymmetric supercapacitors exhibit an excellent maximum energy density of 34.1 Wh kg?1 at the power density of 3197.7 W kg?1 in aqueous electrolyte and 32.2 Wh kg?1 at the power density of 3199.5 W kg?1 in quasi‐solid‐state gel electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号