首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we present a novel iterative learning control (ILC) scheme for a class of joint position constrained robot manipulator systems with both multiplicative and additive actuator faults. Unlike most ILC literature that requires identical reference trajectory from trail to trail, in this work the reference trajectory can be non‐repetitive over the iteration domain without assuming the identical initial condition. A tan‐type Barrier Lyapunov Function is proposed to deal with the constraint requirements which can be both time and iteration varying, with ILC update laws adopted to learn the iteration‐invariant system uncertainties, and robust methods used to compensate the iteration and time varying actuator faults and disturbances. We show that under the proposed ILC scheme, uniform convergence of the full state tracking error beyond a small time interval in each iteration can be guaranteed over the iteration domain, while the constraint requirements on the joint position vector will not be violated during operation. An illustrative example on a two degree‐of‐freedom robotic manipulator is presented to demonstrate the effectiveness of the proposed control scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a new model for linear time‐delay systems with multiple delayed states where each delay contains finite number of successive components with different time‐varying properties, referred to as multiple‐delay system with successive time‐varying delay components (MDSSTDCs). General stability result and H performance conditions, under which the MDSSTDCs are asymptotically stable with certain H disturbance attenuation level, are derived by exploiting a general Lyapunov–Krasovskii functional and by making use of novel techniques for time‐delay systems. The result is applied to two special types of time‐delay systems frequently used in engineering applications and corresponding conditions for stability and H performance are obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a novel design approach for the finite frequency (FF) H filtering problem for discrete‐time state‐delayed systems with quantized measurements. The system state and output are assumed affected by FF external noises. Attention is focused on the design of a stable filter that guarantees the stability and a prescribed ?2 gain performance level for the filtering error system in the FF domain of input noises. Sufficient conditions for the solvability of this problem are developed by choosing an appropriate Lyapunov‐Krasovskii functional based on the delay partitioning technique and using the FF ?2 gain definition combined with the generalized S‐procedure. Then, by means of Finsler's lemma, the derived conditions are linearized and additional slack variables are further introduced to more flexible result. Final filter design conditions are consequently established in terms of linear matrix inequalities in three different frequency ranges, ie, low‐, middle‐ and high‐frequency range. Finally, a simulation example is presented to illustrate the effectiveness and the merits of the proposed approach.  相似文献   

4.
5.
This paper presents a neural‐network‐based finite‐time H control design technique for a class of extended Markov jump nonlinear systems. The considered stochastic character is described by a Markov process, but with only partially known transition jump rates. The sufficient conditions for the existence of the desired controller are derived in terms of linear matrix inequalities such that the closed‐loop system trajectory stays within a prescribed bound in a fixed time interval and has a guaranteed H noise attenuation performance for all admissible uncertainties and approximation errors of the neural networks. A numerical example is used to illustrate the effectiveness of the developed theoretic results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with the problem of H filtering for discrete‐time Markov jump linear system with parametric uncertainties and quantized measurements, when the jumping mode information is not accessible. By converting the quantized errors into a sector‐bounded nonlinearity, the parametric uncertainties and measurements quantization are dealt with in a unified framework. The mode‐independent H filter is designed, and sufficient conditions are established via Lyapunov function approach, such that for all possible uncertain parameters and quantization errors, the resulting filtering error system is robustly stochastically stable and achieves a guaranteed H filtering error performance index. A numerical example is provided to demonstrate the feasibility and effectiveness of the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper studies the problem of exponential H model reduction for continuous‐time switched delay system under average dwell time (ADT) switching signals. Time delay under consideration is interval time varying. Our attention is focused on the construction of the desired reduced order models, which guarantee that the resulting error systems under ADT switching signals are exponentially stable with an H norm bound. By introducing a block matrix and making use of the ADT approach, delay‐dependent sufficient conditions for the existence of reduced order models are derived and formulated in terms of strict linear matrix inequalities (LMIs). Owing to the absence of non‐convex constraints, it is tractable to construct an admissible reduced order model. The effectiveness of the proposed methods is illustrated via two numerical examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the problems of stability analysis, H performance analysis, and robust H filter design for uncertain Markovian jump linear systems with time‐varying delays. The purpose is to improve the existing results on these problems. Firstly, a new delay‐dependent stability criterion is obtained on the basis of a novel mode‐dependent Lyapunov functional. Secondly, a new delay‐dependent bounded real lemma (BRL) is derived. It is shown that the presented stability criterion and the BRL are less conservative than the existing ones in the literature. Thirdly, with the new BRL, delay‐dependent conditions for the solvability of the addressed H filtering problem are given. All the results obtained in this paper are expressed by means of strict linear matrix inequalities. Three numerical examples are provided to demonstrate the utility of the proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper focuses on H filter design for continuous‐time singular systems with time‐varying delay. A delay‐dependent H performance analysis result is first established for error systems via a novel estimation method. By combining a well‐known inequality with a delay partition technique, the upper bound of the derivative of the Lyapunov functional is estimated more tightly and expressed as a convex combination with respect to the reciprocal of the delay rather than the delay. Based on the derived H performance analysis results, a regular and impulse‐free H filter is designed in terms of linear matrix inequalities (LMIs). A numerical example is given to demonstrate the merits of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an online learning algorithm based on integral reinforcement learning (IRL) to design an output‐feedback (OPFB) H tracking controller for partially unknown linear continuous‐time systems. Although reinforcement learning techniques have been successfully applied to find optimal state‐feedback controllers, in most control applications, it is not practical to measure the full system states. Therefore, it is desired to design OPFB controllers. To this end, a general bounded L2 ‐gain tracking problem with a discounted performance function is used for the OPFB H tracking. A tracking game algebraic Riccati equation is then developed that gives a Nash equilibrium solution to the associated min‐max optimization problem. An IRL algorithm is then developed to solve the game algebraic Riccati equation online without requiring complete knowledge of the system dynamics. The proposed IRL‐based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an OPFB policy and updates the OPFB gain using the information given by the evaluated policy. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. A simulation example is provided to verify the convergence of the proposed algorithm to a suboptimal OPFB solution and the performance of the proposed method.  相似文献   

11.
This paper deals with the problem of robust H filter design for Markovian jump systems with norm‐bounded time‐varying parameter uncertainties and mode‐dependent distributed delays. Both the state and the measurement equations are assumed to be with distributed delays. Sufficient conditions for the existence of robust H filters are obtained. Via solving a set of linear matrix inequalities, a desired filter can be constructed. The developed theory is illustrated by a simulation example. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper explains how to use an arm robot experiment system to teach sampled‐data H control theory. A design procedure is presented for a digital tracking control system for a continuous plant with structured uncertainties; the target is the positioning control of an arm robot. To guarantee the robust stability of the closed‐loop system and provide the desired closed‐loop performance, the design problem is first formulated as a sampled‐data H control problem, and is then transformed into an equivalent discrete‐time H control problem. Finally, linear matrix inequalities are used to obtain a reduced‐order output‐feedback controller and a static state‐feedback controller. In a course, the design procedure is explained and practice is provided through simulations and experiments. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

13.
This paper considers the problem of adaptive robust H state feedback control for linear uncertain systems with time‐varying delay. The uncertainties are assumed to be time varying, unknown, but bounded. A new adaptive robust H controller is presented, whose gains are updating automatically according to the online estimates of uncertain parameters. By combining an indirect adaptive control method and a linear matrix inequality method, sufficient conditions with less conservativeness than those of the corresponding controller with fixed gains are given to guarantee robust asymptotic stability and H performance of the closed‐loop systems. A numerical example and its simulation results are given to demonstrate the effectiveness and the benefits of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the reliable H filtering problem is studied for a class of discrete nonlinear Markovian jump systems with sensor failures and time delays. The transition probabilities of the jumping process are assumed to be partly unknown. The failures of sensors are quantified by a variable taking values in a given interval. The time‐varying delay is unknown with given lower and upper bounds. The purpose of the addressed reliable H filtering problem is to design a mode‐dependent filter such that the filtering error dynamics is asymptotically mean‐square stable and also achieves a prescribed H performance level. By using a new Lyapunov–Krasovskii functional and delay‐partitioning technique, sufficient delay‐dependent conditions for the existence of such a filter are obtained. The filter gains are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi‐definite programme method. A numerical example is provided to demonstrate the effectiveness of the proposed design approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper addresses the mixed ???/?? fault detection observer design issue for a class of linear parameter‐varying (LPV) systems. Analogous to the definition of the quadratic ?? performance for LPV systems and the ??? index for linear time invariant (LTI) systems, the quadratic ??? index and the affine quadratic ??? index for LPV systems are defined in terms of linear matrix inequalities (LMIs). The first algorithm for designing the mixed ???/H observer is proposed, which aims at minimizing the quadratic ?? performance and maximizing the quadratic ??? index of the observer error dynamic systems. To reduce the conservativeness of this algorithm, the affine quadratic ?? performance and the affine ??? index for LPV systems are utilized. The robustness conditions and affine ??? index conditions for the underlying observer optimization issue are formulated as parameter‐dependent LMIs. The Gridding technique and multi‐convexity concept are applied, respectively, for reducing the parameter‐dependent LMIs to finite LMI constraints. Correspondingly, two iterative algorithms are proposed. Furthermore, the threshold design and the estimation of the worst undetectable fault size are investigated. An example is studied to demonstrate the effectiveness of the proposed algorithms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In hard disk drives, it is important to enlarge the control bandwidth in order to shorten the track pitch for larger data capacity. However, it is difficult for the H control method to increase the control bandwidth if the mechanical resonance modes have uncertainty. This is because the robustness of the H control method is assured by the small‐gain theorem for additive or multiplicative perturbation and the control bandwidth is limited by the uncertainty. In this study, we propose an H control method for high‐bandwidth design by introducing a new uncertainty model with a feedforward and a feedback path in order to reduce the conservatism of robust design. The effectiveness is shown by numerical simulations. © 2010 Wiley Periodicals, Inc. Electr Eng Jpn, 173(4): 54–62, 2010; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21025  相似文献   

17.
In this paper, stochastic H state feedback control with state‐dependent noise for weakly coupled large‐scale systems is discussed. After establishing the asymptotic structure of the stochastic algebraic Riccati equation (SARE), a new iterative algorithm that combines the Newton's method with the fixed‐point algorithm is derived for the first time. As a result, both the quadratic convergence and the reduced‐order computation in the same dimension of the subsystems are attained. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

18.
This paper considers the problem of robust delay‐dependent L2L filtering for a class of Takagi–Sugeno fuzzy systems with time‐varying delays. The purpose is to design a fuzzy filter such that both the robust stability and a prescribed L2L performance level of the filtering error system are guaranteed. A delay‐dependent sufficient condition for the solvability of the problem is obtained and a linear matrix inequality (LMI) approach is developed. A desired filter can be constructed by solving a set of LMIs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The design of high‐order log‐domain filters can be easily accomplished by transposing already known linear‐domain Gm‐C filter topologies to their counterparts in the log‐domain through the employment of a set of complementary operators. To achieve the Gm‐C filter topologies, the multiple feedback approach is widely used due to its accrued advantages. In this paper a synthesis approach for the development of an nth‐order multifunction log‐domain filter comprising lowpass (LP), highpass (HP) and bandpass (BP) filter functions is proposed. The approach is based on the decomposition of nth‐order HP filter function to follow‐the‐leader‐feedback (FLF) topology. The design is simple and simultaneously achieves nearly all of the chief advantages. The design offers superior performance factors vis‐à‐vis the ones recently reported. To verify the high‐order behavior of the topology, a 5th‐order multifunction filter was designed and the achieved simulated results verify the theory. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is concerned with the problem of the fault detection (FD) filter design for discrete‐time switched linear systems with mode‐dependent average dwell‐time. The switching law is mode‐dependent and each subsystem has its own average dwell‐time. The FD filters are designed such that the augmented switched systems are asymptotically stable, and the residual signal generated by the filters achieves a weighted l2‐gain for some disturbances and guarantees an H ? performance for the fault. By the aid of multiple Lyapunov functions combined with projection lemma, sufficient conditions for the design of the FD filters are formulated by linear matrix inequalities, furthermore, the filters gains are characterized in terms of the solution of a convex optimization problem. Finally, an application to boost convertor is given to illustrate the effectiveness and the applicability of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号