共查询到20条相似文献,搜索用时 31 毫秒
1.
Jeannette N. Asaad 《应用聚合物科学杂志》2013,129(4):1812-1819
Two unsaturated polyesters, one based on phthalic anhydride PEP and the other based on isophthalic acid PEI, were synthesized. The chemical structure of the two polyesters was characterized by IR and 1H and 13C NMR spectroscopy. The effect of styrene concentration on the curing of polyesters was also studied. It has been found that the percent of polyester/styrene (70/30 wt %) gave the highest percent of curing. Different concentrations of carborundum (0–70 wt %) were used to prepare polyester composites. A comparative study was done on the properties of the two prepared polyesters PEP and PEI and their composites in term of their thermal, mechanical, electrical, and physical properties. The results indicate that the polyester based on isophthalic acid (PEI) and its composites gave higher compressive strength values and lower water absorption than those based on phthalic anhydride (PEP). The presence of carborundum improved the thermal stability than the cured polyesters and electrical properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
2.
PET interleaving veils for improved fracture toughness of glass fibre/low‐styrene‐emission unsaturated polyester resin composites 下载免费PDF全文
The use of interleaved polyethylene terephthalate (PET) veils to increase the interlaminar fracture toughness of glass fiber‐reinforced, low‐styrene emission, unsaturated polyester resin composites, was investigated. PET, being chemically similar to the unsaturated polyester resin, was expected to exhibit good wetting and strong interaction with the matrix. Composite laminates were manufactured by hand lay‐up, with the veil content varying up to 7%. The effects of PET veils on the interlaminar shear strength, flexural strength, flexural modulus, glass transition temperature, damping parameters, and Mode‐I interlaminar fracture toughness of the composite were studied. The veils were found to enhance most of these properties, with only minor negative effects on flexural stiffness and Tg. The PET/resin bonding did indeed prove to be strong, but the enhancement of fracture toughness was not as much as expected, because of the weaker glass/resin interface providing an alternative crack propagation path. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42877. 相似文献
3.
Agrowastes and woodflour are a potential and attractive alternative of cheap reinforcement for brittle polymeric materials because they can reduce costs and, at the same time, improve certain properties. On the other hand, their high moisture sorption and low microbial resistance are disadvantages that need to be considered and, as far as possible, corrected. Polyester resins are widely used throughout the world, and can be processed with reinforcing agents very easily. In this work, the effect of the addition of chemically modified woodflour on the final properties of unsaturated polyester composites was studied. The filler was treated with an alkaline solution to increase its interfacial area and then modified with maleic anhydride (MAN) under severe reaction conditions (140°C, 24 h). No improvement in the mechanical behavior of polyester–woodflour composites was found when particles were only alkali treated, while the composites prepared with MAN-treated woodflour offered better performance under compressive loads. Simple mechanical models used to fit the experimental flexural behavior indicated that a good compatibility between filler and matrix was obtained regardless of the kind (treated or untreated) of reinforcement used. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2121–2131, 1998 相似文献
4.
Guar gum is a naturally occurring galactomannan, which is extremely hydrophilic in nature. Hydroxypropyl guar gum (HPG) was subjected to acetylation using acetic anhydride and pyridine. The effect of the reduction in the hydrophilic nature of the polymer on its filler properties was studied by using the derivatized guar gum as filler in an unsaturated polyester composite. The effect of degree of substitution and the concentration of filler on the rheological, chemical, and mechanical properties of the composites were studied. Results indicated that an increase in the acetate content in the HPG resulted in an increased polymer–filler interaction. However, the composites resulting from these derivatized HPGs showed reduced mechanical properties. This decrease in the mechanical properties were attributed to the decrease in the hydrogen bonding in the filler particles, thus reducing the cohesiveness and strength of the filler particles themselves. Thus, polysaccharides can be used as fillers but chemically modifying them results in a change in the basic nature of the filler itself and is not just restricted to surface modification as is the case of inorganic fillers and fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
5.
Physical properties of fly ash filled unsaturated polyester composites in both uncured and cured states have been studied with special reference to the effect of degree of loading, nature of filler surface, and surface treatment of filler. The effect of filler surface on curing and oil absorption characteristics of filler were also examined. In the uncured state, sedimentation rate test and viscosity measurement for fly ash reinforced composites were performed. For cured fly ash filled unsaturated polyester composites, tensile properties decreased with the addition of fly ash particles whereas surface treatment led to improved mechanical properties and resistance to swelling. In terms of dynamic mechanical thermal analysis, effects of both filler and surface treatment on loss factor (tan δ) were discussed. Tan δ value and damping temperature range increased to the 15% fly ash addition. The composite having 15% unsilanized fly ash was found to have the highest tan δ and damping temperature range together with maximum performance in terms of tensile properties and swelling behavior. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1128–1136, 2000 相似文献
6.
Fabrication and characterization of novel zirconia filled glass fiber reinforced polyester hybrid composites 下载免费PDF全文
Muhammad Azeem Munawar Shahzad Maqsood Khan Nafisa Gull Muhammad Shafiq Atif Islam Saba Zia Aneela Sabir Awais Sattar Ghouri Muhammad Taqi Zahid Butt Tahir Jamil 《应用聚合物科学杂志》2016,133(27)
Novel hybrid glass fiber reinforced polyester composites (GFRPCs) filled with 1‐5 wt % microsized zirconia (ZrO2) particles, were fabricated by hand lay‐up process followed by compression molding and evaluated their physical, mechanical and thermal behaviors. The consumption of styrene in cured GFRPCs was confirmed by Fourier transform infrared spectroscopy. The potential implementation of ZrO2 particles lessened the void contents marginally and substantially enhanced the mechanical and thermal properties in the resultant hybrid composites. The GFRPCs filled with 4 wt % ZrO2 illustrated noteworthy improvement in tensile strength (66.672 MPa) and flexural strength (67.890 MPa) while with 5 wt % ZrO2 showed 63.93% rise in hardness, respectively, as compared to unfilled GFRPCs. Physical nature of polyester matrix for composites and an improved glass transition temperature (Tg) from 103 to 112 °C was perceived by differential scanning calorimetry thermograms. Thermogravimetric analysis revealed that the thermal stability of GFRPCs was remarkably augmented with the addition of ZrO2. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43615. 相似文献
7.
An unsaturated polyester (UP) resin was modified by the addition of a thermosetting bismaleimide (BMD) as a second coreactive monomer. The copolymers were characterized in terms of mechanical, thermal, and morphological properties by tensile, bend, and impact testing; thermogravimetric analysis; heat deforming temperature analysis; dynamic mechanical analysis; and scanning electron microscopy. In addition, Fourier transform infrared spectroscopy of modified resin indicated that crosslinking networks were formed between BMD and UP. The properties of the modified resins were compared with those of unmodified resins. The results indicate that the addition of BMD not only improved the thermal decomposition temperature and heat deforming temperature but also caused small changes in the mechanical properties. The effect of the construct of BMD and the reactions among BMD, UP, and styrene were analyzed. The results show that BMD has great potential to improve the properties of UP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 593–598, 2006 相似文献
8.
Polymeric nanocomposites were synthesized from unsaturated polyester (UPE) matrix and montmorillonite (MMT) clay using an in situ free radical polymerization reaction. Organophilic MMT was obtained using a quaternary salt of coco amine as intercalant having a styryl group making it a reactive intercalant. The resultant nanocomposites were characterized via X‐ray diffraction and transmission electron microscopy. The effect of increased nanofiller loading on the thermal and mechanical properties of the nanocomposites was investigated. All the nanocomposites were found to have improved thermal and mechanical properties as compared with neat UPE matrix, resulting from the contribution of nanolayer connected intercalant‐to‐crosslinker which allows a crosslinking reaction. It was found that the partially exfoliated nanocomposite structure with an exfoliation dominant morphology was achieved when the MMT loading was 1 wt %. This nanocomposite exhibited the highest thermal stability, the best dynamic mechanical performance and the highest crosslinking density, most probably due to more homogeneous dispersion and optimum amount of styrene monomer molecules inside and outside the MMT layers at 1 wt % loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
9.
Dynamic mechanical test methods have been widely employed for investigating the structures and viscoelastic behavior of polymeric materials to determine their relevant stiffness and damping characteristics for various applications. Randomly oriented short banana/sisal hybrid fiber–reinforced polyester composites were prepared by keeping the volume ratio of banana and sisal 1 : 1 and the total fiber loading 0.40 volume fraction. Bilayer (banana/sisal), trilayer (banana/sisal/banana and sisal/banana/sisal), and intimate mix composites were prepared. The effect of layering pattern on storage modulus (E′), damping behavior (tan δ), and loss modulus (E″) was studied as a function of temperature and frequency. Bilayer composite showed high damping property while intimately mixed and banana/sisal/banana composites showed increased stiffness compared to the other pattern. The Arrhenius relationship has been used to calculate the activation energy of the glass transition of the composites. The activation energy of the intimately mixed composite was found to be the highest. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2168–2174, 2005 相似文献
10.
Xianshen Zeng Deming Cai Zhidan Lin Xiang Cai Xiuju Zhang Shaozao Tan Yingbin Xu 《应用聚合物科学杂志》2012,126(2):601-607
A series of poly(ethylene terephthalate) (PET)/phosphonium vermiculite (P‐VMT) composites were prepared by a melt‐blending method, and we investigated the morphology and thermal and mechanical properties of the composites. We prepared P‐VMT with quaternary phosphonium salts using the common method followed by a cation‐exchange reaction. X‐ray diffraction showed that the phosphonium surfactants were partially intercalated into the vermiculite layers, The d‐spacing of the PET–clay sample was somewhat less than that of the P‐VMT because some degradation of the surfactant took place during melt processing. Compared with PET, the PET–clay composites had a lower decomposition temperature and showed a 17.4% increase in the tensile strength with a P‐VMT content of 3 wt %. Scanning electron microscopy and transmission electron microscopy demonstrated that P‐VMT had a homogeneous dispersion and good compatibility in the polymer matrix with a low content of additive and indicated that the P‐VMT content of 3 wt % was optimal. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
11.
Physical properties of unsaturated polyester resins (UPE resins) prepared from glycolyzed poly (ethylene terephthalate) (PET) and PET/cotton blended fabrics were investigated. Initially, PET and PET/cotton blended fabrics were chemically recycled by glycolysis. The depolymerizations were carried out in propylene glycol with the presence of zinc acetate as a catalyst. The reaction time was varied at 4, 6, and 8 h. The glycolyzed products were then esterified using maleic anhydride to obtain UPE resins. The prepared resins were cured using styrene monomer, methyl ethyl ketone peroxide, and cobalt octoate as a crosslinking agent, an initiator and an accelerator, respectively. The cured resin products were tested for their mechanical properties and thermal stability. The results indicated that, among the fabric based resins, one prepared from the 8‐h glycolyzed product possessed the highest mechanical properties those are tensile strength, tensile modulus, flexural strength, impact strength, and hardness. The highest thermal stability was also found in the cured resin prepared from the 8‐h glycolyzed product. The mechanical properties of fabric based resins were slightly lower than those of the bottle based resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2536–2541, 2007 相似文献
12.
Influence of kenaf form and loading on the properties of kenaf‐filled polypropylene/waste tire dust composites: A comparison study 下载免费PDF全文
Kenaf (KNF)‐filled polypropylene/waste tire dust (PP/WTD) composites containing different KNF loadings (0, 5, 10, 15, and 20 parts per hundred parts of resin (phr)) were prepared using a Thermo Haake Polydrive internal mixer. The influence of the KNF form (KNF short fiber (KNFs) and KNF powder (KNFp)) at different KNF loadings on properties of the composites was studied. Results showed that with increasing KNF loading, the stabilization torque, tensile modulus, water absorption, and thermal properties increased for both KNFp‐ and KNFs‐filled PP/WTD composites. However, the tensile strength and elongation at break decreased by 29.2% and 53.9%, respectively, for KNFp‐filled PP/WTD composites, whereas KNFs‐filled PP/WTD composites showed a decrement of 24.5% and 63.5%, respectively. The stabilization torque, tensile strength, and tensile modulus increased by 22.4%, 6.7%, and 2.6%, respectively, for KNFs‐filled PP/WTD composites at 20 phr KNF loading. The scanning electron microscopy morphological studies on the tensile fractured surfaces revealed poor adhesion between KNFp and PP/WTD matrices as compared to KNFs and PP/WTD matrices. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40877. 相似文献
13.
The storage of postconsumer glass fiber reinforced unsaturated polyester composite impacts negatively on the environment because of the long lifetime and the volume/amount ratio of residuals, which are important aspects to be considered. Two types of additives were employed as an attempt to improve the mechanical properties of sheets manufactured with ground postconsumer glass fiber reinforced orthophthalic unsaturated polyester resin composite and virgin orthophthalic unsaturated polyester resin, a silane‐coupling agent and an organic dispersant. Flexural and impact tests, and dynamic mechanical analyses, demonstrated that the coupling agent increased the mechanical properties, while the dispersant decreased these properties, compared to material without either additive. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1834–1839, 2004 相似文献
14.
The influence of two types of surface treatments (aminosilane and Lica‐12) on the mechanical and thermal properties of polypropylene (PP) filled with single and hybrid filler (silica and mica) was studied. An improvement in tensile properties and impact strength was found for both treatments compared to those of untreated composites. However, the filler with silane coupling agent showed better improvement compared to the filler with Lica‐12 coupling agent. This was due to better adhesion between filler and matrix. Thermal analysis indicates that surface treatments increased the nucleating ability of filler, but decreased the coefficient of thermal expansion of PP composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
15.
Influence of fiber orientation and fiber content on properties of sisal‐jute‐glass fiber‐reinforced polyester composites 下载免费PDF全文
The incorporation of natural fibers with polymer matrix composites (PMCs) has increasing applications in many fields of engineering due to the growing concerns regarding the environmental impact and energy crisis. The objective of this work is to examine the effect of fiber orientation and fiber content on properties of sisal‐jute‐glass fiber‐reinforced polyester composites. In this experimental study, sisal‐jute‐glass fiber‐reinforced polyester composites are prepared with fiber orientations of 0° and 90° and fiber volume of sisal‐jute‐glass fibers are in the ratio of 40:0:60, 0:40:60, and 20:20:60 respectively, and the experiments were conducted. The results indicated that the hybrid composites had shown better performance and the fiber orientation and fiber content play major role in strength and water absorption properties. The morphological properties, internal structure, cracks, and fiber pull out of the fractured specimen during testing are also investigated by using scanning electron microscopy (SEM) analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42968. 相似文献
16.
To improve the performance of unsaturated polyester (UP) under cold‐heat alternate temperature, self‐synthesized reactive thermotropic liquid crystalline polymer (TLCP)‐methacryloyl copolymer (LCMC), UP, and glass fiber (GF) hybrid composites was prepared by molding technology. The apparent activation energy and crystal behavior analysis of LCMC/UP blends were investigated by Differential scanning calorimetry and X‐ray diffraction (XRD), respectively, the results showed that the addition of LCMC can reduce apparent activation energy and accelerate the curing reaction of UP, the XRD analysis indicated that the crystal phase of LCMC still exist in the blends after blending with UP. The effect of LCMC content on the properties of LCMC/UP/GF hybrid composites such as impact strength, bending strength, and ring‐on‐block wear were also investigated through static mechanical tests and wear tests. The mechanical properties of hybrid composites increased significantly because of the addition of LCMC. The wear tests showed that LCMC can improve the wear resistance of the UP/GF/LCMC hybrid composites even though the content of LCMC was at a relatively low level (5–7.5 wt %). This makes it possible to develop novel kind of UP‐based materials with good wear resistance for various applications. The Worn surface was observed by scanning electron microscopy (SEM) and the mechanism for the improvement is discussed in this paper. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3899–3906, 2007 相似文献
17.
Imran Rab Nawaz Ting Wang Athar Ali Khan Gorar Adnan Ghani Soomro Syed Kamran Sami Ahmer Hussain Shah Jun Wang Wen-Bin Liu Syed Haseeb Sultan Aijaz Ahmed Babar Abdul Qadeer Dayo 《应用聚合物科学杂志》2021,138(43):51279
In the current study, 1 wt%, NaOH treated pine cone (ATPC) particles composites with bisphenol-A aniline based benzoxazine (BA-a) matrix were prepared by isothermal compression method. Ultimate impacts of ATPC reinforcement on the thermomechanical, tensile, flexural, and impact properties of the composites were studied by using a dynamic mechanical analyzer (DMA), a Universal testing machine, and a Tinius-Olsen impact device, respectively. The thermal stability of ATPC particles was remarkably increased, TGA confirmed that particles will not be degraded during the curing. The DMA results of 30 wt% ATPC reinforced composites confirmed that the glass transition temperature, storage modulus, and loss modulus were 22 ° C, 2510, and 250 MPa higher than the neat matrix, respectively. In addition, the impact strength of the 30 wt% ATPC reinforced composites was nearly 3 times higher than the neat matrix, which confirmed that the matrix's brittleness is reduced, similar observation was confirmed by the Brostow and coworkers empirical model. Moreover, a gradual rise in the tensile and flexural properties was also recorded. We can easily conclude from the studied parameters that the ATPC particles can be used as a sustainable agro-waste in polymeric composites. 相似文献
18.
Zhonglin Cao Zedong Liao Xi Wang Shengpei Su Jianxiang Feng Jin Zhu 《应用聚合物科学杂志》2013,127(5):3725-3730
A novel rubber filler, black liquor–montmorillonite complex (BL–MMT) was prepared by dehydration of a mixture of MMT and BL and used in the preparation of acrylonitrile butadiene rubber (NBR) composites by mechanical mixing method. The BL–MMT/rubber composites were characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). Experimental results of XRD and TEM indicated that MMT was well‐dispersed in the rubber because of the presence of lignin. DSC, thermo‐oxidative aging measurements and TGA results demonstrated that the thermal properties of NBR were improved due to the addition of BL–MMT. The tensile properties including tensile strength, elongation at break, and modulus were also tested. All experimental results indicated that this BL–MMT complex could be an effective reinforcing agent in rubber for cost‐saving and environment benefits. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
19.
Toughening effects of interleaved nylon veils on glass fabric/low‐styrene‐emission unsaturated polyester resin composites 下载免费PDF全文
The effectiveness of using interleaved nylon veils to increase the interlaminar toughness of glass fiber reinforced, low‐styrene emission unsaturated polyester resin composites has been investigated. Samples were manufactured by a hand lay‐up technique followed by compression moulding. Nylon 66 veils were used, with the veil content varying from 0% to 4% by weight. Double cantilever beam, short beam shear, and three point bend tests were performed. The increasing levels of nylon veil content improved the interlaminar toughness of the composites, which was characterized by critical strain energy release rate (GIC). The maximum GIC for crack propagation of a nylon interleaved composite increased by almost 170% over the baseline glass fiber reinforced composite. Dynamic Mechanical Analysis revealed an increase in the damping parameter of up to 117%. Image analysis via Digital Image Correlation and Scanning Electron Microscopy revealed increased fiber bridging between adjacent plies as a key reason for these improvements. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41462. 相似文献
20.
Effect of layered silicates on fibril formation and properties of PCL/PLA microfibrillar composites 下载免费PDF全文
Ivan Kelnar Ivan Fortelný Ludmila Kaprálková Jaroslav Kratochvíl Borislav Angelov Martina Nevoralová 《应用聚合物科学杂志》2016,133(8)
The study deals with improvement of poly(?‐caprolactone) (PCL) parameters by in situ forming of poly(lactic acid) (PLA) fibrils. This structure is achieved by preparation of the melt‐drawn microfibrillar composite (MFC) from the PCL/PLA 80/20 blend containing the organophilized montmorillonite (oMMT) added using various mixing protocols. Improved mechanical behavior corresponds to the micron‐sized fibrils formation and reinforcement of both polymer components by oMMT, and to increased crystalline phase content in the fibrillar PLA phase. Effective melt drawing is only possible after the rheological parameters of the polymer components have been modified by oMMT where the clay addition method and content are of primary importance. From the results obtained, it follows that the role of oMMT in MFC is quite complex, numerous clay‐induced effects may be contradictory and must be harmonized to achieve PCL‐based biodegradable MFCs with improved parameters. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43061. 相似文献