首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

2.
The aggregation‐induced emission (AIE) phenomenon is important in organic light‐emitting diodes (OLEDs), for it can potentially solve the aggregation‐caused quenching problem. However, the performance of AIE fluorophor‐based OLEDs (AIE OLEDs) is unsatisfactory, particularly for deep‐blue devices (CIEy < 0.15). Here, by enhancing the device engineering, a deep‐blue AIE OLED exhibits low voltage (i.e., 2.75 V at 1 cd m?2), high luminance (17 721 cd m?2), high efficiency (4.3 lm W?1), and low efficiency roll‐off (3.6 lm W?1 at 1000 cd m?2), which is the best deep‐blue AIE OLED. Then, blue AIE fluorophors, for the first time, have been demonstrated to achieve high‐performance hybrid white OLEDs (WOLEDs). The two‐color WOLEDs exhibit i) stable colors and the highest efficiency among pure‐white hybrid WOLEDs (32.0 lm W?1); ii) stable colors, high efficiency, and very low efficiency roll‐off; or iii) unprecedented efficiencies at high luminances (i.e., 70.2 cd A?1, 43.4 lm W?1 at 10 000 cd m?2). Moreover, a three‐color WOLED exhibits wide correlated color temperatures (10 690–2328 K), which is the first hybrid WOLED showing sunlight‐style emission. These findings will open a novel concept that blue AIE fluorophors are promising candidates to develop high‐performance hybrid WOLEDs, which have a bright prospect for the future displays and lightings.  相似文献   

3.
An efficient orange‐light‐emitting polymer (PFTO‐BSeD5) has been developed through the incorporation of low‐bandgap benzoselenadiazole (BSeD) moieties into the backbone of a blue‐light‐emitting polyfluorene copolymer (PFTO poly{[9,9‐bis(4‐(5‐(4‐tert‐butylphenyl)‐[1,3,4]‐oxadiazol‐2‐yl)phenyl)‐9′,9′‐di‐n‐octyl‐[2,2′]‐bifluoren‐7,7′‐diyl]‐stat‐[9,9‐bis(4‐(N,N‐di(4‐n‐butylphenyl)amino)phenyl)‐9′,9′‐di‐n‐octyl‐[2,2′]‐bifluoren‐7,7′‐diyl]}) that contains hole‐transporting triphenylamine and electron‐transporting oxadiazole pendent groups. A polymer light‐emitting device based on this copolymer exhibits a strong, bright‐orange emission with Commission Internationale de L'Eclairage (CIE) color coordinates (0.45,0.52). The maximum brightness is 13 716 cd m–2 and the maximum luminance efficiency is 5.53 cd A–1. The use of blends of PFTO‐BSeD5 in PFTO leads to efficient and stable white‐light‐emitting diodes—at a doping concentration of 9 wt %, the device reaches its maximum external quantum efficiency of 1.64 % (4.08 cd A–1). The emission color remains almost unchanged under different bias conditions: the CIE coordinates are (0.32,0.33) at 11.0 V (2.54 mA cm–2, 102 cd m–2) and (0.31,0.33) at 21.0 V (281 mA cm–2, 7328 cd m–2). These values are very close to the ideal CIE chromaticity coordinates for a pure white color (0.33,0.33).  相似文献   

4.
A series of blue (B), green (G) and red (R) light‐emitting, 9,9‐bis(4‐(2‐ethyl‐hexyloxy)phenyl)fluorene (PPF) based polymers containing a dibenzothiophene‐S,S‐dioxide (SO) unit (PPF‐SO polymer), with an additional benzothiadiazole (BT) unit (PPF‐SO‐BT polymer) or a 4,7‐di(4‐hexylthien‐2‐yl)‐benzothiadiazole (DHTBT) unit (PPF‐SO‐DHTBT polymer) are synthesized. These polymers exhibit high fluorescence yields and good thermal stability. Light‐emitting diodes (LEDs) using PPF‐SO25, PPF‐SO15‐BT1, and PPF‐SO15‐DHTBT1 as emission polymers have maximum efficiencies LEmax = 7.0, 17.6 and 6.1 cd A?1 with CIE coordinates (0.15, 0.17), (0.37, 0.56) and (0.62, 0.36), respectively. 1D distributed feedback lasers using PPF‐SO30 as the gain medium are demonstrated, with a wavelength tuning range 467 to 487 nm and low pump energy thresholds (≥18 nJ). Blending different ratios of B (PPF‐SO), G (PPF‐SO‐BT) and R (PPF‐SO‐DHTBT) polymers allows highly efficient white polymer light‐emitting diodes (WPLEDs) to be realized. The optimized devices have an attractive color temperature close to 4700 K and an excellent color rendering index (CRI) ≥90. They are relatively stable, with the emission color remaining almost unchanged when the current densities increase from 20 to 260 mA cm?2. The use of these polymers enables WPLEDs with a superior trade‐off between device efficiency, CRI, and color stability.  相似文献   

5.
A novel yellowish‐green triplet emitter, bis(5‐(trifluoromethyl)‐2‐p‐tolylpyridine) (acetylacetonate)iridium(III) (1), was conveniently synthesized and used in the fabrication of both monochromatic and white organic light‐emitting diodes (WOLEDs). At the optimal doping concentration, monochromatic devices based on 1 exhibit a high efficiency of 63 cd A?1 (16.3% and 36.6 lm W?1) at a luminance of 100 cd m?2. By combining 1 with a phosphorescent sky‐blue emitter, bis(3,5‐difluoro‐2‐(2‐pyridyl)phenyl)‐(2‐carboxypyridyl)iridium(III) (FIrPic), and a red emitter, bis(2‐benzo[b]thiophen‐2‐yl‐pyridine)(acetylacetonate)iridium(III) (Ir(btp)2(acac)), the resulting electrophosphorescent WOLEDs show three evenly separated main peaks and give a high efficiency of 34.2 cd A?1 (13.2% and 18.5 lm W?1) at a luminance of 100 cd m?2. When 1 is mixed with a deep‐blue fluorescent emitter, 4,4′‐bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl (BCzVBi), and Ir(btp)2(acac), the resulting hybrid WOLEDs demonstrate a high color‐rendering index of 91.2 and CIE coordinates of (0.32, 0.34). The efficient and highly color‐pure WOLEDs based on 1 with evenly separated red, green, blue peaks and a high color‐rendering index outperform those of the state‐of‐the‐art emitter, fac‐tris(2‐phenylpyridine)iridium(III) (Ir(ppy)3), and are ideal candidates for display and lighting applications.  相似文献   

6.
Organic single crystals with much higher carrier mobility and stability compared to the amorphous organic materials have shown great potential in electronic and optoelectronic devices. However, their applications in white organic light‐emitting devices (WOLEDs), especially the three‐color‐strategy WOLEDs, have been hindered by the difficulties in fabricating complicated device structures. Here, double‐doped white‐emission organic single crystals are used as the active layers for the first time in the three‐color‐strategy WOLEDs by co‐doping the red and green dopants into blue host crystals. Precise control of the dopant concentration in the double‐doped crystals results in moderately partial energy transfer from the blue donor to the green and red dopants, and thereafter, simultaneous RGB emissions with balanced emission intensity. The highest color‐rendering index (CRI) and efficiency, to the best of the authors' knowledge, are obtained for the crystal‐based WOLEDs. The CRI of the WOLEDs varies between 80 and 89 with the increase of the driving current, and the luminance and current efficiency reach up to 793 cd m?2 and 0.89 cd A?1, respectively. The demonstration of the present three‐color organic single‐crystal‐based WOLED promotes the development of the single crystals in optoelectronics.  相似文献   

7.
Using imidazole‐type ancillary ligands, a new class of cationic iridium complexes ( 1 – 6 ) is prepared, and photophysical and electrochemical studies and theoretical calculations are performed. Compared with the widely used bpy (2,2′‐bipyridine)‐type ancillary ligands, imidazole‐type ancillary ligands can be prepared and modified with ease, and are capable of blueshifting the emission spectra of cationic iridium complexes. By tuning the conjugation length of the ancillary ligands, blue‐green to red emitting cationic iridium complexes are obtained. Single‐layer light‐emitting electrochemical cells (LECs) based on cationic iridium complexes show blue‐green to red electroluminescence. High efficiencies of 8.4, 18.6, and 13.2 cd A?1 are achieved for the blue‐green‐emitting, yellow‐emitting, and orange‐emitting devices, respectively. By doping the red‐emitting complex into the blue‐green LEC, white LECs are realized, which give warm‐white light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.42, 0.44) and color‐rendering indexes (CRI) of up to 81. The peak external quantum efficiency, current efficiency, and power efficiency of the white LECs reach 5.2%, 11.2 cd A?1, and 10 lm W?1, respectively, which are the highest for white LECs reported so far, and indicate the great potential for the use of these cationic iridium complexes in white LECs.  相似文献   

8.
An efficient white‐light‐emitting polymer ( W3 ) is realized by covalently attaching a green fluorophore and a red phosphor into the backbone and the side chains, respectively, of polyfluorene at a concentration of 0.04 mol %. In addition, charge‐transporting pendant units are included to improve carrier injection and transport. White‐electrophosphorescent devices with the structure ITO/PEDOT:PSS/ W3 /CsF/Al (ITO: indium tin oxide; PEDOT:PSS: poly(styrenesulfonate)‐doped poly(3,4‐ethylenedioxythiophene)) exhibit a low turn‐on voltage of 2.8 V and a luminance of ca. 103 cd m–2 at below 6 V. The peak luminance and power‐conversion efficiencies are 8.2 cd A–1 and 7.2 lm W–1, respectively. Furthermore, the device shows relatively stable white emission: the Commission Internationale d'Éclairage (CIE) chromaticity coordinates of the devices change only slightly from (0.35,0.38) at 10 mA cm–2 to (0.33,0.36) at 100 mA cm–2, with an almost constant color render index (CRI) value of 82 at all measured current densities.  相似文献   

9.
We investigate the light‐emitting performances of blue phosphorescent organic light‐emitting diodes (PHOLEDs) with three different electron injection and transport materials, that is, bathocuproine(2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline) (Bphen), 1,3,5‐tri(m‐pyrid‐3‐yl‐phenyl)benzene (Tm3PyPB), and 2,6‐bis(3‐(carbazol‐9‐yl)phenyl)pyridine (26DCzPPy), which are partially doped with cesium metal. We find that the device characteristics are very dependent on the nature of the introduced electron injection layer (EIL) and electron transporting layer (ETL). When the appropriate EIL and ETL are combined, the peak external quantum efficiency and peak power efficiency improve up to 20.7% and 45.6 lm/W, respectively. Moreover, this blue PHOLED even maintains high external quantum efficiency of 19.6% and 16.9% at a luminance of 1,000 cd/m2 and 10,000 cd/m2, respectively.  相似文献   

10.
This work demonstrates a novel proof‐of‐concept to implement pentacene derivatives as emitters for the third generation of light‐emitting electrochemical cells based on small‐molecules (SM‐LECs). Here, a straightforward procedure is shown to control the chromaticity of pentacene‐based lighting devices by means of a photoinduced cycloaddition process of the 6,13‐bis(triisopropylsilylethynyl) (TIPS)‐pentacene that leads to the formation of anthracene‐core dimeric species featuring a high‐energy emission. Without using the procedure, SM‐LECs featuring deep‐red emission with Commission Internationale d'Eclairage (CIE) coordinates of x = 0.69/y = 0.31 and irradiance of 0.4 μW cm?2 are achieved. After a careful optimization of the cycloaddition process, warm white devices with CIE coordinates of x = 0.36/y = 0.38 and luminances of 10 cd m?2 are realized. Here, the mechanism of the device is explained as a host–guest system, in which the dimeric species acts as the high‐energy band gap host and the low‐energy bandgap TIPS‐pentacene is the guest. To the best of the knowledge, this work shows the first warm white SM‐LECs. Since this work is based on the archetypal TIPS‐pentacene and the photoinduced cycloaddition process is well‐knownfor any pentacenes, this proof‐of‐concept could open a new way to use these compounds for developing white lighting sources.  相似文献   

11.
A solution‐based fabrication of flexible and light‐weight light‐emitting devices on paper substrates is reported. Two different types of paper substrates are coated with a surface‐emitting light‐emitting electrochemical cell (LEC) device: a multilayer‐coated specialty paper with an intermediate surface roughness of 0.4 μm and a low‐end and low‐cost copy paper with a large surface roughness of 5 μm. The entire device fabrication is executed using a handheld airbrush, and it is notable that all of the constituent layers are deposited from solution under ambient air. The top‐emitting paper‐LECs are highly flexible, and display a uniform light emission with a luminance of 200 cd m?2 at a current conversion efficacy of 1.4 cd A?1.  相似文献   

12.
The lifetime of the organic devices remains a major challenge that must be overcome before the wide application of white organic light‐emitting diodes (WOLEDs) technology. In this work, we present a new strategy to achieve WOLEDs with an extremely long lifetime by wisely control of the recombination zone. A blue emitting layer of 6,6′‐(1,2‐ethenediyl)bis(N‐2‐naphthalenyl‐N‐phenyl‐2‐naphthalenamine doped 9‐(1‐naphthyl)‐10‐(2‐naphthyl)‐anthracene was deposited on top of the mixed host blue emitting layer to prevent hole penetration into the electron transporting layer and to attain better confinement of carrier recombination. In this way, we obtained a WOLED with a record high lifetime of over 150 000 hours at an initial brightness of 1000 cd m?2, 40 times longer than the conventional bilayer WOLED. The electroluminescent spectra of the long‐lived WOLED showed almost no color‐shifting after accelerated aging. It is anticipated that these results might be a starting point for further research towards ultrastable OLED displays and lightings.  相似文献   

13.
2‐(2‐tert‐Butyl‐6‐((E)‐2‐(2,6,6‐trimethyl‐2,4,5,6‐tetrahydro‐1H‐pyrrolo[3,2,1‐ij]quinolin‐8‐yl)vinyl)‐4H‐pyran‐4‐ylidene)malononitrile (DCQTB) is designed and synthesized in high yield for application as the red‐light‐emitting dopant in organic light‐emitting diodes (OLEDs). Compared with 4‐(dicyanomethylene)‐2‐tert‐butyl‐6‐(1,1,7,7,‐tetramethyljulolidyl‐9‐enyl)‐4H‐pyran (DCJTB), one of the most efficient red‐emitting dopants, DCQTB exhibits red‐shifted fluorescence but blue‐shifted absorption. The unique characteristics of DCQTB with respect to DCJTB are utilized to achieve a red OLED with improved color purity and luminous efficiency. As a result, the device that uses DCQTB as dopant, with the configuration: indium tin oxide (ITO)/N,N′‐bis(1‐naphthyl)‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4′‐diamine (NPB; 60 nm)/tris(8‐quinolinolato) aluminum (Alq3):dopant (2.3 wt %) (7 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 12 nm)/Alq3(45 nm)/LiF(0.3 nm):Al (300 nm), shows a larger maximum luminance (Lmax = 6021 cd m–2 at 17 V), higher maximum efficiency (ηmax = 4.41 cd A–1 at 11.5 V (235.5 cd m–2)), and better chromaticity coordinates (Commission Internationale de l'Eclairage, CIE, (x,y) = (0.65,0.35)) than a DCJTB‐based device with the same structure (Lmax = 3453 cd m–2 at 15.5 V, ηmax = 3.01 cd A–1 at 10 V (17.69 cd m–2), and CIE (x,y) = (0.62,0.38)). The possible reasons for the red‐shifted emission but blue‐shifted absorption of DCQTB relative to DCJTB are also discussed.  相似文献   

14.
Considerable efforts have been devoted to the development of highly efficient blue light‐emitting materials. However, deep‐blue fluorescence materials that can satisfy the Commission Internationale de l'Eclairage (CIE) coordinates of (0.14, 0.08) of the National Television System Committee (NTSC) standard blue and, moreover, possess a high external quantum efficiency (EQE) over 5%, remain scarce. Here, the unusual luminescence properties of triphenylamine‐bearing 2‐(2′‐hydroxyphenyl)oxazoles ( 3a–3c ) and their applications in organic light‐emitting diodes (OLEDs) are reported as highly efficient deep‐blue emitters. The 3a ‐based device exhibits a high spectral stability and an excellent color purity with a narrow full‐width at half‐maximum of 53 nm and the CIE coordinates of (0.15, 0.08), which is very close to the NTSC standard blue. The exciton utilization of the device closes to 100%, exceeding the theoretical limit of 25% in conventional fluorescent OLEDs. Experimental data and theoretical calculations demonstrate that 3a possesses a highly hybridized local and charge‐transfer excited state character. In OLEDs, 3a exhibits a maximum luminance of 9054 cd m?2 and an EQE up to 7.1%, which is the first example of highly efficient blue OLEDs based on the sole enol‐form emission of 2‐(2′‐hydroxyphenyl)azoles.  相似文献   

15.
White organic light‐emitting diodes (WOLEDs) composed of conventional fluorophores possess color purity, low efficiency roll‐off, and rare metal absence, but suffer from theoretical limits due to the lack of triplet utilization. Due to the different diffusion distance for singlets and triplets, multiple Förster resonance energy transfer (FRET) channels can be adequately built up. Herein, besides the complementary component, a blue fluorescence layer, hosted by pure hydrocarbon material SF4‐TPE, is put forward as the spatial exciton manipulating layer to rationally allocate singlets and triplets to the corresponding channels. Hence, singlets are captured by the blue fluorophore, diffused triplets subsequently undergo energy resonance between the blue fluorophore and green assistant, and up‐conversion effect for eventual emission from the yellow fluorophore. Owing to the utilization of singlets and triplets, all‐fluorescence WOLEDs exhibit high efficiency exceeding 20%, with slight efficiency roll‐off even under high luminance of 5000 cd cm?2. Moreover, CIE coordinates can be surrounding and precisely inside the American National Standard Institute (ANSI) quadrangles, as well as outstanding color stability (ΔCIE‐(x, y) within (0.001, 0.012)) from 300 to 13000 cd cm?2.  相似文献   

16.
A novel blue‐emitting material, 2‐tert‐butyl‐9,10‐bis[4‐(1,2,2‐triphenylvinyl)phenyl]anthracene ( TPVAn ), which contains an anthracene core and two tetraphenylethylene end‐capped groups, has been synthesized and characterized. Owing to the presence of its sterically congested terminal groups, TPVAn possesses a high glass transition temperature (155 °C) and is morphologically stable. Organic light‐emitting diodes (OLEDs) utilizing TPVAn as the emitter exhibit bright saturated‐blue emissions (Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of x = 0.14 and y = 0.12) with efficiencies as high as 5.3 % (5.3 cd A–1)—the best performance of non‐doped deep blue‐emitting OLEDs reported to date. In addition, TPVAn doped with an orange fluorophore served as an authentic host for the construction of a white‐light‐emitting device that displayed promising electroluminescent characteristics: the maximum external quantum efficiency reached 4.9 % (13.1 cd A–1) with CIE coordinates located at (0.33, 0.39).  相似文献   

17.
Graphene quantum dots (GQDs) with white fluorescence are synthesized by a microwave‐assisted hydrothermal method using graphite as the precursor. A solution‐processed white‐light‐emitting diode (WLED) is fabricated using the as‐prepared white fluorescent GQDs (white‐light‐emitting graphene quantum dots, WGQDs) doped 4,4‐bis(carbazol‐9‐yl)biphenyl as the emissive layer. White‐light emission is obtained from the WLED with 10 wt% doping concentration of WGQDs, which shows a luminance of 200 cd m?2 at the applied voltage of 11–14 V. Importantly, an external quantum efficiency of 0.2% is achieved, which is the highest among all the reported WLED based on GQDs or carbon dots. The results demonstrate that WGQDs as a novel phosphor may open up a new avenue to develop the environmentally friendly WLEDs for practical application in solid‐state lighting.  相似文献   

18.
Highly power‐efficient white organic light‐emitting diodes (OLEDs) are still challenging to make for applications in high‐quality displays and general lighting due to optical confinement and energy loss during electron‐photon conversion. Here, an efficient white OLED structure is shown that combines deterministic aperiodic nanostructures for broadband quasi‐omnidirectional light extraction and a multilayer energy cascade structure for energy‐efficient photon generation. The external quantum efficiency and power efficiency are raised to 54.6% and 123.4 lm W?1 at 1000 cd m?2. An extremely small roll‐off in efficiency at high luminance is also obtained, yielding a striking value of 106.5 lm W?1 at 5000 cd m?2. In addition to a substantial increase in efficiency, this device structure simultaneously offers the superiority of angular color stability over the visible wavelength range compared to conventional OLEDs. It is anticipated that these findings could open up new opportunities to promote white OLEDs for commercial applications.  相似文献   

19.
Novel blue‐light‐emitting materials, 9,10‐bis(1,2‐diphenyl styryl)anthracene (BDSA) and 9,10‐bis(4′‐triphenylsilylphenyl)anthracene (BTSA), which are composed of an anthracene molecule as the main unit and a rigid and bulky 1,2‐diphenylstyryl or triphenylsilylphenyl side unit, have been designed and synthesized. Theoretical calculations on the three‐dimensional structures of BDSA and BTSA show that they have a non‐coplanar structure and inhibited intermolecular interactions, resulting in a high luminescence efficiency and good color purity. By incorporating these new, non‐doped, blue‐light‐emitting materials into a multilayer device structure, it is possible to achieve luminance efficiencies of 1.43 lm W–1 (3.0 cd A–1 at 6.6 V) for BDSA and 0.61 lm W–1 (1.3 cd A–1 at 6.7 V) for BTSA at 10 mA cm–2. The electroluminescence spectrum of the indium tin oxide (ITO)/copper phthalocyanine (CuPc)/1,4‐bis[(1‐naphthylphenyl)‐amino]biphenyl (α‐NPD)/BDSA/tris(9‐hydroxyquinolinato)aluminum (Alq3)/LiF/Al device shows a narrow emission band with a full width at half maximum (FWHM) of 55 nm and a λmax = 453 nm. The FWHM of the ITO/CuPc/α‐NPD/BTSA/Alq3/LiF/Al device is 53 nm, with a λmax = 436 nm. Regarding color, the devices showed highly pure blue emission ((x,y) = (0.15,0.09) for BTSA, (x,y) = (0.14,0.10) for BDSA) at 10 mA cm–2 in Commission Internationale de l'Eclairage (CIE) chromaticity coordinates.  相似文献   

20.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号