首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the problem of adaptive neural control is discussed for a class of strict‐feedback time‐varying delays nonlinear systems with full‐state constraints and unmodeled dynamics, as well as distributed time‐varying delays. The considered nonlinear system with full‐state constraints is transformed into a nonlinear system without state constraints by introducing a one‐to‐one asymmetric nonlinear mapping. Based on modified backstepping design and using radial basis function neural networks to approximate the unknown smooth nonlinear function and using a dynamic signal to handle dynamic uncertainties, a novel adaptive backstepping control is developed for the transformed system without state constraints. The uncertain terms produced by state time delays and distributed time delays are compensated for by constructing appropriate Lyapunov‐Krasovskii functionals. All signals in the closed‐loop system are proved to be semiglobally uniformly ultimately bounded. A numerical example is provided to illustrate the effectiveness of the proposed design scheme.  相似文献   

2.
This paper presents an online data‐driven composite adaptive backstepping control for a class of parametric strict‐feedback nonlinear systems with mismatched uncertainties, where both tracking errors and prediction errors are utilized to update parametric estimates. Hybrid exact differentiators are applied to obtain the derivatives of virtual control inputs such that the complexity problem of integrator backstepping can be avoided. Closed‐loop tracking error equations are integrated in a moving‐time window to generate prediction errors such that online recorded data can be utilized to improve parameter adaptation. Semiglobal asymptotic stability of the closed‐loop system is rigorously established by the time‐scales separation and Lyapunov synthesis. The proposed composite adaptation can not only avoid the application of identification models and linear filters resulting in a simpler control structure, but also suppress parametric uncertainties and external perturbations via the time‐interval integral. Simulation results have demonstrated that the proposed approach possesses superior control performances under both noise‐free and noisy‐measurement environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an adaptive fuzzy backstepping dynamic surface control (DSC) approach is developed for a class of MIMO nonlinear systems with input delays and state time‐varying delays. The unknown continuous nonlinear functions are expressed as the linearly parameterized form by using the fuzzy logic systems, and then, by combining the backstepping technique, the appropriate Lyapunov–Krasovskii functionals, and the ‘minimal learning parameters’ algorithms with the DSC approach, the adaptive fuzzy tracking controller is designed. Our development is able to eliminate the problem of ‘explosion of complexity’ inherent in the existing backstepping‐based methods. It is proven that the proposed design method can guarantee that all the signals in the closed‐loop system are bounded and the tracking error is smaller than a prescribed error bound. Finally, simulation results are provided to show the effectiveness of the proposed approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the problem of adaptive multi‐dimensional Taylor network (MTN) decentralized tracking control for large‐scale stochastic nonlinear systems. Minimizing the influence of randomness and complex nonlinearity, which increases computational complexity, and improving the controller's real‐time performance for the stochastic nonlinear system are of great significance. With combining adaptive backstepping with dynamic surface control, a decentralized adaptive MTN tracking control approach is developed. In the controller design, MTNs are used to approximate nonlinearities, the backstepping technique is employed to construct the decentralized adaptive MTN controller, and the dynamic surface control technique is adopted to avoid the “explosion of computational complexity” in the backstepping design. It is proven that all the signals in the closed‐loop system remain bounded in probability, and the tracking errors converge to a small residual set around the origin in the sense of a mean quartic value. As the MTN contains only addition and multiplication, the proposed control method is more simplified and of good real‐time performance, compared with the existing control methods for large‐scale stochastic nonlinear systems. Finally, a numerical example is presented to illustrate the effectiveness of the proposed design approach, and simulation results demonstrate that the method presented in this paper has good real‐time performance and control quality, and the dynamic performance of the closed‐loop system is satisfactory.  相似文献   

5.
This paper presents a solution to the problem of digitally implementing backstepping adaptive control for linear systems. The continuous‐time system to be controlled is given a discrete‐time representation in the δ‐operator. A discrete adaptive backstepping controller is then designed for such a discrete‐time model. The effect of the modelling error, generated by the sampling process, is accounted for in the parameter update law by a σ‐modification. It is shown that all the signals (discrete and continuous) of the closed loop are uniformly bounded, with a region of attraction which is a K function of the sampling rate. An upper bound on the asymptotic tracking error is then given, and shown to be proportional to the sampling period. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
An adaptive neural network (NN) command filtered backstepping control is proposed for the pure‐feedback system subjected to time‐varying output/stated constraints. By introducing a one‐to‐one nonlinear mapping, the obstacle caused by full stated constraints is conquered. The adaptive control law is constructed by command filtered backstepping technology and radial basis function NNs, where only one learning parameter needs to be updated online. The stability analysis via nonlinear small‐gain theorem shows that all the signals in closed‐loop system are semiglobal uniformly ultimately bounded. The simulation examples demonstrate the effectiveness of the proposed control scheme.  相似文献   

7.
This paper deals with the problem of fault estimation and accommodation for a class of networked control systems with nonuniform uncertain sampling periods. Firstly, the reason why the adaptive fault diagnosis observer cannot be applied to networked control systems is analyzed. Based on this analysis, a novel robust fault estimation observer is constructed to estimate both continuous‐time fault and system states by using nonuniformly discrete‐time sampled outputs. Furthermore, using the obtained states and fault information, a nonuniformly sampled‐data fault tolerant control law is designed to preserve the stability of the closed‐loop system. The proposed scheme can not only guarantee the impact of continuous‐time uncertainties and discrete‐time sampled estimation errors on the faulty system to satisfy a H performance index but also repress the negative effect of the unknown intersample behavior of continuous‐time fault by use of an inequality technique. Finally, simulation results are included to demonstrate the feasibility of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, an adaptive decentralized neural control problem is addressed for a class of pure‐feedback interconnected system with unknown time‐varying delays in outputs interconnections. By taking advantage of implicit function theorem and the mean‐value theorem, the difficulty from the pure‐feedback form is overcome. Under a wild assumption that the nonlinear interconnections are assumed to be bounded by unknown nonlinear functions with outputs, the difficulties from unknown interconnections are dealt with, by introducing continuous packaged functions and hyperbolic tangent functions, and the time‐varying delays in interconnections are compensated by Lyapunov–Krasovskii functional. Radial basis function neural network is used to approximate the unknown nonlinearities. Dynamic surface control is successfully extended to eliminate ‘the explosion of complexity’ problem in backstepping procedure. To reduce the computational burden, minimal learning parameters technique is successfully incorporated into this novel control design. A delay‐independent decentralized control scheme is proposed. With the adaptive neural decentralized control, only one estimated parameter need to be updated online for each subsystem. Therefore, the controller is more simplified than the existing results. Also, semiglobal uniform ultimate boundedness of all of the signals in the closed‐loop system is guaranteed. Finally, simulation studies are given to demonstrate the effectiveness of the proposed design scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, an adaptive fuzzy backstepping dynamic surface control approach is considered for a class of uncertain pure‐feedback nonlinear systems with immeasurable states. Fuzzy logic systems are first employed to approximate the unknown nonlinear functions, and then an adaptive fuzzy state observer is designed to estimate the immeasurable states. By the combination of the adaptive backstepping design with a dynamic surface control technique, an adaptive fuzzy output feedback backstepping control approach is developed. It is proven that all the signals of the resulting closed‐loop system are semi‐globally uniformly ultimately bounded, and the observer and tracking errors converge to a small neighborhood of the origin by choosing the design parameters appropriately. Simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Nonlinear time‐varying systems exist widely in practice. Therefore, it is of great theoretical importance and practical value to investigate the problem of controlling such systems. However, the results available in developing adaptive control to address such a problem are still limited. Especially a majority of them are restricted to be slowly time‐varying linear systems. This paper presents a modular‐based adaptive control scheme for parametric strict feedback nonlinear time‐varying systems. The parameters considered include both continuous and piecewise time‐varying parameters, and they are not necessarily restricted to be slowly time‐varying or infrequent jumping. The technique of adaptive backstepping with nonlinear damping is employed in the control design module, while the parameter projection algorithm is performed on the parameter estimation module. It is proved that the uniform boundedness of all closed‐loop system signals can be guaranteed with the proposed control scheme. The performance of the tracking error in the mean square sense with respect to the parameter variation rate is also established. Furthermore, perfect asymptotically tracking can be achieved when the varying rates of unknown parameters are in the space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the global adaptive finite‐time stabilization of a class of switched nonlinear systems, whose subsystems are all in p (p≤1) normal form with unknown control coefficients and parametric uncertainties. The restrictions on the power orders and the nonlinear perturbations are relaxed. By using the parameter separation technique, the uncertain parameters are separated from nonlinear functions. A systematic design procedure for a common state feedback controller and a switching adaptive law is presented by employing the backstepping methodology. It is proved that the closed‐loop system is finite‐time stable under arbitrary switching by utilizing the common Lyapunov function. Finally, with the application to finite‐time control of chemical reactor systems, the effectiveness of the proposed method is demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, adaptive finite‐time control is addressed for a class of high‐order nonlinear systems with mismatched disturbances. An adaptive finite‐time controller is designed in which variable gains are adjusted to ensure finite‐time stabilization for the closed‐loop system. Chattering is reduced by a designed adaptive sliding mode observer which is also used to deal with the mismatched disturbances in finite time. The proposed adaptive finite‐time control method avoids calculating derivative repeatedly of traditional backstepping methods and reduces computational burden effectively. Three numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

13.
An adaptive nonsingular terminal sliding mode (NTSM) tracking control scheme based on backstepping design is presented for micro‐electro‐mechanical systems (MEMS) vibratory gyroscopes in this paper. The NTSM controller is designed based on backstepping strategy to eliminate the singularity, while ensuring the control system to reach the sliding surface and converge to equilibrium point in a finite period of time from any initial state. In addition, the proposed approach develops an online identifier scheme, which can real‐time estimate the angular velocity and the damping and stiffness coefficients. All adaptive laws in the control system are derived in the same Lyapunov framework, which can guarantee the globally asymptotical stability of the closed‐loop system. Numerical simulations for a MEMS gyroscope are investigated to demonstrate the validity of the proposed control approaches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper explains how to use an arm robot experiment system to teach sampled‐data H control theory. A design procedure is presented for a digital tracking control system for a continuous plant with structured uncertainties; the target is the positioning control of an arm robot. To guarantee the robust stability of the closed‐loop system and provide the desired closed‐loop performance, the design problem is first formulated as a sampled‐data H control problem, and is then transformed into an equivalent discrete‐time H control problem. Finally, linear matrix inequalities are used to obtain a reduced‐order output‐feedback controller and a static state‐feedback controller. In a course, the design procedure is explained and practice is provided through simulations and experiments. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

15.
The sliding mode control method has been extensively employed to stabilize time delay systems with nonlinear perturbations. Although the resulting closed‐loop systems have good transient and steady‐state performances, the designed controllers are dependent on the time delays. But one knows that it is difficult to obtain the precise delay time in practical systems, especially when it is time varying. In this paper, we revisit the problem and use the backstepping method to construct the state feedback controller. First, a coordinate transformation is used to obtain a cascade time delay system. Then, a linear virtual control law is designed for the first subsystem. The memoryless controller is further constructed based on adaptive method for the second subsystem with the uncertainties bounded by linear function. By choosing new Lyapunov–Krasovskii functional, we show that the system state converges to zero asymptotically. Via the proposed approach, we also discuss the case that the uncertainties are bounded by nonlinear functions. Finally, simulations are done to verify the effectiveness of the main results obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The transient stability problem of a single‐machine infinite‐bus system with static var compensator is solved in this paper, where the static var compensator controller is designed by an improved backstepping method combining error compensation, adaptive backstepping control, and sliding mode variable structure control. Crucially, the error compensation term, which chooses in the step of virtual control by the adaptive backstepping method, is introduced to ensure that the system states are bounded, maintaining the nonlinearity of the power systems while also improving the speed of parameter identification. Meanwhile, the Lyapunov function is constituted step by step to achieve stability of the subsystem. In addition, a parameter updating law and a nonlinear control law are explicitly given to asymptotically stabilize the closed‐loop system. Finally, a simulation is used to illustrate the effectiveness and the practicality of the proposed control approach.  相似文献   

17.
In this paper, a novel direct adaptive neural control approach is presented for a class of single‐input and single‐output strict‐feedback nonlinear systems with nonlinear uncertainties, unmodeled dynamics, and dynamic disturbances. Radial basis function neural networks are used to approximate the unknown and desired control signals, and a direct adaptive neural controller is constructed by combining the backstepping technique and the property of hyperbolic tangent function. It is shown that the proposed control scheme can guarantee that all signals in the closed‐loop system are semi‐globally uniformly ultimately bounded in mean square. The main advantage of this paper is that a novel adaptive neural control scheme with only one adaptive law is developed for uncertain strict‐feedback nonlinear systems with unmodeled dynamics. Simulation results are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

19.
In this paper, an adaptive multi‐dimensional Taylor network (MTN) control scheme based on the backstepping and dynamic surface control (DSC) is developed to solve the tracking control problem for the stochastic nonlinear system with immeasurable states. The MTNs are used to approximate the unknown nonlinearities, and then based on the multivariable analog of circle criterion, an observer is first introduced to estimate the immeasurable states. By combining the adaptive backstepping technique and the DSC technique, an adaptive MTN output‐feedback backstepping DSC approach is developed. It is shown that the proposed controller ensures that all signals of the closed‐loop system are remain bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of probability. Finally, the effectiveness of the design approach is illustrated by simulation results.  相似文献   

20.
An adaptive homo‐backstepping control for nonlinear strict‐feedback systems subjected to unknown actuator dead‐zone and disturbance is investigated. A sliding‐mode‐based integral filter is constructed and used to approximate the desired feedback control in the backstepping‐like recursive design technique. Subsequently, the problem of “explosion of complexity” is solved by obviating the analytic derivatives deduction for virtual control in the conventional backstepping technology. The actuator dead‐zone dynamic is modeled as the combination of a line and a disturbance‐like term, which makes the controller design simpler. The interconnected control module and filter module in the resulting closed‐loop system satisfy the input‐to‐state practically stability‐modularity condition, provided that the small‐gain theorem is exploited to ensure the stability of closed‐loop system. The proposed approach cannot only mitigate the effect of dead‐zone but also solve the problem of explosion of complexity in the previous literature. Numerical simulations performed on a manipulator with a brushed DC motor are introduced to illustrate the effectiveness of underlying control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号