首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
Molecularly imprinted polymers (MIPs) were grafted from the surface of Fe3O4 nanoparticles containing double bond via suspension polymerization in aqueous environment, and the leakage of Fe3O4 nanoparticles from MIPs was overcome in this study. The effect of different cross‐linker on adsorption capacity of the resultant magnetic MIPs was investigated using pure trimethylolpropane trimethacrylate (TRIM) or the mixture of TRIM and divinylbenzene (DVB) as cross‐linker. Both magnetic MIPs exhibited higher adsorption capacity for the template theophylline than the corresponding non‐imprinted polymer, and Freundlich model fitted reasonably well for theophylline adsorption on both magnetic MIPs. In addition, both magnetic MIPs exhibited good recognition properties for the template theophylline versus caffeine, and the selectivity of magnetic MIPs using pure TRIM as cross‐linker (mag‐MIP‐TRIM) was much higher than those using the mixture of TRIM and DVB as cross‐linker (mag‐MIP‐TRIM and DVB). The adsorption dynamics of theophylline on both magnetic MIPs fitted well with the first‐order kinetic model, but the adsorption equilibrium on mag‐MIP‐TRIM and DVB reached faster than that on mag‐MIP‐TRIM. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
The preparation of indole molecularly imprinted polymers (indole‐MIPs) using 4‐vinylpyridine as functional monomer, silica gel as matrix were used to adsorb indole from fuel oil specifically. The reverse atom transfer radical polymerization (RATRP) technology was introduced to prepare the surface molecularly imprinted polymers, and the precipitation polymerization was adopted in the preparation process. The obtained indole‐MIPs were characterized by nitrogen adsorption, Fourier transform infrared spectrometry and scanning electron microscopy. The results show that indole‐MIPs were provided with the larger surface areas and more pores. The adsorption capacity of indole‐MIPs was 31.80 mg g?1 at 298 K, and the adsorption equilibrium was reached in a short time. The adsorption process was spontaneous by thermodynamic analysis, and an appropriate decrease in temperature could enhance the adsorption capacity. The adsorption process obeyed pseudo‐second‐order kinetic model by kinetics analysis. The isotherm analysis results show that both Langmuir and Sips equations were suitable to experimental data. The selective adsorption and reusable performance of indole‐MIPs were favorable. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40473.  相似文献   

3.
Molecular imprinting is a method for making artificial receptor sites in a polymer. This article reports the direct nanolayer immobilization of molecularly imprinted polymers (MIPs) on hydroxyl-functionalized multiwalled carbon nanotubes (MWCNTs) without any binder to improve their characteristics. MIPs were formed for hydrochlorothiazide (HCT) as a template on the surface of the MWCNTs with methacrylic acid (functional monomer) and ethylene glycol dimethacrylate (crosslinking agent) with a thermal polymerization technique. The morphology and stability of the immobilized molecularly imprinted polymers on the surface of multiwalled carbon nanotubes (MIPCNTs) was characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The resulting MIPCNTs demonstrated favorable selectivity, good stability, and a higher adsorption capacity for the template molecule (93.0 μg/mg) compared to products created by bulk polymerization. The adsorption kinetics of HCT at the surface of the MIPCNTs was in agreement with the second-order rate equation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
采用溶胶-凝胶方法和表面分子印迹技术,以二氧化硅为载体,鞣花酸为模板分子,3-氨丙基三乙氧基硅烷为功能单体,四乙氧基硅烷为交联剂,在室温下合成鞣花酸分子印迹聚合物(MIPs)。通过扫描电镜表征了MIP的表面形貌。通过静态吸附实验评价了MIP对鞣花酸的吸附行为。结果显示,MIP对鞣花酸可在40 min内达到吸附平衡,印迹因子为2.68,饱和吸附容量可达70 mg/g;与非印迹聚合物相比,MIP对鞣花酸具有高选择性和特异识别性。对吸附数据进行非线性拟合结果显示,MIP对鞣花酸的吸附动力学较好地符合准二级动力学模型,MIP对鞣花酸的吸附等温线较好地符合Langmuir等温方程。另外,该材料在经过5次循环利用之后,对鞣花酸的吸附容量仍能保持在90%以上,表现了较好的重复利用性能。所合成的MIP能够作为一种良好的选择性吸附鞣花酸的功能材料,有望应用于复杂基质中鞣花酸的分离和纯化。  相似文献   

5.
The molecular imprinting technique is a new method for preparing molecularly imprinted polymers (MIPs) with specific molecular recognition sites for certain target molecules. In this study, a novel, facile preparation method was presented, called “seed precipitation polymerization,” for the synthesis of MIPs via surface imprinting and a support matrix. In the polymerization process, kaempferol was used as the template molecule, methacrylic acid as the functional monomer, nano‐TiO2 as the support, azodiisobutyronitrile as the initiator, and ethylene glycol dimethacrylate as the crosslinker in acetonitrile solvent. The synthesized T‐MIP and MIP were analyzed by infrared spectroscopy and scanning electron microscopy. In addition, the obtained polymers were evaluated by adsorption isotherms and dynamic curves for their selective recognition properties for kaempferol. The results show that T‐MIP shows regular spherical particles; the adsorption dynamic curves of T‐MIP show that the adsorption capacity increases with time and reaches a maximum value and then finally reaches equilibrium, and the T‐MIP exhibits a higher affinity for kaempferol than does the MIP. The adsorption follows pseudo‐second‐order kinetics, the Freundlich adsorption equation fits the experimental data well, and there is strong evidence for multiple‐layer adsorption. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44888.  相似文献   

6.
The 17?-estradiol-imprinted polymers using non-covalent approach with methacrylic acid as the functional monomer was prepared and characterized. The effect of porogenic solvents on the adsorption capacity and thermal stability of the molecularly imprinted polymers (MIPs) were examined. Scanning electron microscopic images showed that the synthesized MIPs were bulk porous materials. The surface areas of MIPs increased from 151?C188 to 239?C292?m2?g-1 when templates were removed by methanol using Soxhlet extraction. In addition, the MIPs prepared in chloroform had a higher adsorption capacity towards 17?-estradiol (1,212???g?g-1) than that in acetonitrile (769???g?g-1), indicating that less polar porogenic solvent is suitable for synthesis of non-covalent MIPs. FTIR showed that the carbonyl group is the major functional group in MIPs to form monomer-template complex via H-bond. In addition, only a slight decrease (< 5?%) in adsorption capacity of the MIPs was observed when incubated at 80?°C for 5?h. Analysis of the capacity factor values (??imp??) for MIPs indicated that the rebinding ability from selective recognition sites of MIPs decreased in the order 17?-estradiol?>?testosterone?>?benzo[a]pyrene?>?progesterone?>?phenol, and the ??imp?? values decreased from 2.68 to 0.63, indicating the excellent selectivity of MIPs among closely related compounds. Results obtained in this study clearly indicate that the imprinted polymer is specific for recognizing 17?-estradiol. The excellent selectivity and high adsorption capacity of 17?-estradiol-imprinted polymers open the door to develop MIPs for effective separation and adsorption of estrogenic compounds.  相似文献   

7.
pH and temperature dual‐sensitive protein imprinted microspheres with high absorption capacity have been successfully synthesized on the surface of SiO2 using chitosan grafted N‐isopropylacrylamide (CS‐g‐NIPAM) as the pH and temperature sensitive monomer, with acrylamide as comonomer, N,N′‐methylenebisacrylamide as the crosslinking agent and bovine serum albumin (BSA) as the template protein. The pH and temperature dual‐sensitivity was also investigated. The results showed that the adsorption capacity and imprinting factor improved slowly with increasing incubation pH from 4.6 to 7.0, and then decreased sharply in alkaline conditions due to the reduction of non‐specific binding from electrostatic and hydrogen bonding interactions. Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy were used to characterize the polymers. The as‐prepared SiO2@BSA molecularly imprinted polymers were also found to have high adsorption capacity (119.88 mg g?1) within 2 h, an excellent imprinting factor (α = 2.25), specific selectivity and good reusability. © 2019 Society of Chemical Industry  相似文献   

8.
An azobenzene‐containing molecularly imprinting polymer microsphere with photoresponsive binding properties toward 2,4‐dichlorophenoxyacetic acid (2,4‐D) was successful prepared via silica surface polymerization. The number‐average diameters of silica and imprinting polymer microsphere are 0.5 and 0.7 μm, respectively. The static adsorption, binding and selectivity experiments were performed to investigate the adsorption properties and recognition characteristics of the polymers for 2,4‐D. The equilibrium adsorptive experiments indicated that 2,4‐D‐SMIP(surface molecularly imprinted polymers) has significantly higher adsorption capacity for 2,4‐D than its nonimprinted polymers (SNIP).The binding constant Kd and apparent maximum number Qmax of the imprinted polymer were determined by Scatchard analysis as 0.054 mmol L?1 and 0.167 mmol g?1, respectively. The result of photoregulated release and uptake of 2,4‐D experiment demonstrated that azo‐containing SMIP can make use of light and change it into mechanical properties to release and take up the template molecules. It means that the SMIP can be controlled by light. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 869‐876, 2013  相似文献   

9.
In this study, we used a green, one‐pot method to synthesize hydrophilic molecularly imprinted polymers (MIPs) via the precipitation polymerization of hydrophilic monomers in ethanol. The as‐prepared materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic light scattering, and water contact angle measurements (27.3 ± 0.1°). As compared to the imprinting and nonimprinting processes, tetracycline (TC), as a template molecule, had an important effect on the morphology of the MIPs, and the possible mechanism is discussed in detail. We also discuss the effects of the parameters on the binding performance as determined by batch adsorption experiments in pure water. The adsorption capacity increased with increasing concentration and temperature at an optimum pH of 5.0. The Langmuir isotherm fitted the data better, with a maximal concentration of 45.75 μmol/g at 318 K. The kinetic properties of the MIPs (within 3.0 h) toward TC were analyzed with pseudo‐first‐order and pseudo‐second‐order kinetic equations and the intraparticle diffusion model. The MIPs exhibited specific recognition toward TC, and other competitive antibiotics were used as references. All of the results indicate that the MIPs exhibited a large adsorption capacity and great specific recognition for TC. The high affinity to TC of the MIPs, with its fast and easy fabrication, provides them with potential applications in the selective separation of the TC antibiotics from an aqueous environment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40071.  相似文献   

10.
Molecular imprinting is an elegant approach to induce antibody like recognition ability in synthetic polymers. The technique of molecular imprinting has been used extensively in the preparation of tailor‐made stationary phases in chromatography, sorbents in solid phase extraction, sensor elements, etc. Though several of the reported molecularly imprinted polymers (MIPs) possess substrate selectivity comparable to antibodies, they are poor in adsorption capacity. The adsorption capacity could be improved presumably through enhanced interaction between the functionalities of the monomers and the print molecule. A simple approach to improve the interaction is perhaps the use of chemically modified monomers in the synthesis of the MIPs. This article explores this possibility by using a metal‐containing monomer in the synthesis of MIP. The data obtained using a copper acrylate based MIP and cholesterol as substrate indicates the adsorption capacity can be improved considerably through the simple chemical modification of the functional monomer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2795–2799, 2001  相似文献   

11.
Highly selective molecularly imprinted polymers (MIPs) that absorb sulfonamides (SAs) are prepared using two types of SAs as mixed templates, 2‐vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. The optimum combination of the mixed templates, their adsorption effect and the imprinting mechanism are evaluated based on SPE recoveries of a family of analytes, equilibrium binding, BET surface area analysis and UV. The results indicate that the mixed templates not only optimize the cavities of the MIPs but also improve the MIPs selectivity and adsorption capacity for the target analytes in aqueous solution. Therefore, MIPs are used for the quantitative analysis of SAs in fish farming water using off‐line SPE coupled to HPLC/DAD. The recovery and RSD were 84.16–101.19 and 1.98–7.10%, respectively. Four SAs analytes were detected in four types of water samples in the range of 8.49–74.60 ng L?1. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41491.  相似文献   

12.
In this study, we report the development of adsorptive extraction materials by surface protein-imprinted polymers (MIPs) over silica gel for selective recognition/separation of human serum albumin (HSA) from urine. The HSA-imprinted polymers prepared on silica particle had at interface between the silica gel and different MIPs greatly produced enrichment for the binding of protein from the urine. The solid-phase extraction of the optimized polymer layer was prepared by copolymerization of methacrylic acid (MAA), acrylamide (AAm), and dimethylaminoethylmethacrylate (DMAEMA) and a crosslinker methylenebisacrylamide (MBA) at the mole ratio of 1:158:88 (T:M:C) and showed moderate affinity (<104 order M−1) toward target protein HSA and selectivity. Four analogues, egg white albumin (EWA), bovine serum albumin (BSA), lysozyme (Lyz), and creatinine (Cre) were selected to study the binding efficiency of MIPs in single and binary protein solutions. We studied the influence on recognition ability for HSA and found that prepolymer mixture and matrix flexibility of the optimized thin polymer layer (35 ± 10 nm) on the submicrosilica particles. The high-binding affinity (QMIP, 86.7 mg g−1) and fast kinetics (180 min) were observed for this synthesized HSA-MIP when compared with other reported HSA-MIPs in surface imprinting (5.9 and 11.3 mg g−1) and epitope surface imprinting (46.6 mg g−1) methods. We demonstrated the application in real and synthetic urine samples that the approach allowed the efficient adsorption of HSA in real urine (129.48 mg g−1) is almost double to the binding of HSA in synthetic urine (67.84 mg g−1). Apart from this, only minor interference of Cre (2.74 mg g−1) was observed, eventhough Cre is the final metabolite in urine. These adsorptive submicrosilica materials have potential in the pharmaceutical industry and clinical analysis applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46894.  相似文献   

13.
Nylon 6 nanofibers incorporated with molecularly imprinted polymers (MIPs) were successfully fabricated by electrospinning with fiber diameters in the range 80–145 nm. Then, they were used as a new material for the extraction of selected bisphenol A (BPA) in water samples. Field emission scanning electron microscopy images revealed that the nanofibers had a smooth morphology with a good incorporation of MIPs. The Fourier transform infrared and energy-dispersive X-ray spectroscopy results also confirmed the formation of the MIPs in the nanofibers. Furthermore, Raman spectroscopy showed that the crystalline structure of the pristine nylon 6 nanofiber was a kind of α form, and the incorporation of MIPs led to a γ-form structure in the nanofibers; this proved the interactions between nylon 6 and the MIPs. Adsorption studies also confirmed that the adsorption efficiency of BPA onto the molecularly imprinted polymer nanofibers (MIP-NFs; 83.5%) was much greater than that onto nonimprinted polymer nanofibers (NIP-NFs; 36.8%). Also, the imprinting factor was 3.4; this strongly implied the successful formation of molecularly imprinted cavities on the MIP-NFs with a strong affinity to BPA. The maximum adsorption capacity of the MIP-NFs was 103.8 mg/g. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47112.  相似文献   

14.
利用分子印迹技术的特异性识别,采用本体热聚合,以酸碱相互作用为基本作用机理,分别以甲基丙烯酸二甲氨基乙酯(DMAEMA)、甲基丙烯酸二乙氨基乙酯(DEAM)、甲基丙烯酸-2-氨基乙基酯盐酸盐(AMA盐酸盐)、4-乙烯基吡啶(4-VP)和甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)和二乙烯基苯(DVB)为交联剂,偶氮二异丁腈(AIBN)为引发剂,乙腈为溶剂设计合成了三氯生(TCS)的分子印迹聚合物(MIPs)。吸附结果表明,其中DEAM是TCS的最佳功能单体,吸附率达到了78.5%,印迹因子达到了1.7,用DEAM作为功能单体合成的MIPs对TCS的选择性实验结果显示,对TCS的吸附容量明显高于其结构类似物,对TCS的吸附实验结果显示,5次回收后重复利用,吸附容量仅降低了5.1%,表明该MIPs可以重复使用多次。  相似文献   

15.
Molecularly imprinted polymers (MIPs) have been synthesized in the absence of a solvent using fumed silica nanoparticles to create a porous network. The method employed led to a chiral imprinting effect and allowed for an excellent control over the internal morphology of imprinted and non‐imprinted polymer (NIP) materials. The polymers possess high surface areas (>300 m2) and identical pore size (112 Å). The MIP exhibited an imprinting factor (IF) of 9 and a selectivity value (α) of 1.83 for (?)‐ephedrine. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44104.  相似文献   

16.
N-异丙基丙烯酰胺(NIPAM)和壳聚糖为功能单体,牛血清白蛋白(BSA)为模板蛋白,在改性SiO2表面制备温度/pH双敏蛋白质印迹聚合物。TEM、FTIR和TG等结果证明印迹层已成功接枝在载体表面。系统研究了聚合物的温度/pH双敏性、吸附容量、吸附动力学、特异性、竞争吸附性及重复性。结果表明,印迹聚合物(MIP)的溶胀率和吸附容量受温度和pH影响较大,高温碱性收缩,低温酸性溶胀。在pH 4.6和35℃下,对0.6mg/mL BSA吸附4h时获得较大的吸附容量(83.74mg/g),印迹因子为2.02。同时MIP也有较好的特异性和竞争吸附性。重复5次后,吸附容量仍能维持在88%,说明重复性良好。这种新型的温度/pH双敏蛋白质分子印迹合成方法简单,在蛋白质的分离和识别方面有较好的应用前景。  相似文献   

17.
Molecularly imprinted polymers (MIP) with high performance in selectively recognizing bisphenol A (BPA) were prepared by using a novel and facile surface molecular‐imprinting technique. Vinyl‐functionalized, monodispersed silica spheres were synthesized by a one‐step emulsion reaction in aqueous solution. Then, BPA surface molecularly imprinted polymers (SMIP) were prepared by polymerization with 4‐vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. Maximal sorption capacity (Qmax) of the resulting SMIP was up to 600 μmol g?1, while that of nonimprinted polymers was only 314.68 μmol g?1. Kinetic binding study showed that sorption capacity reached 70% of Qmax in 20 min and sorption equilibrium at 80 min. SMIP had excellent accessibility and affinity toward BPA, for the selectivity coefficients of SMIP for BPA in respect to phenol, p‐tert‐butylphenol, and o‐phenylphenol were 3.39, 3.35, and 3.02, respectively. The reusage process verified the SMIP owning admirably stable adsorption capacity toward BPA for eight times. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
王成  郭建良  饶国宁 《化工进展》2020,39(9):3757-3765
以三硝基甲苯(TNT)为模板分子,甲基丙烯酸(MAA)为功能单体,采用乳液聚合法制备TNT的分子印迹聚合物(MIPs)。将制备的MIPs分散在溶剂中,通过表面涂覆法制备出检测TNT的分子印迹电化学传感器。紫外光谱表明TNT与MAA之间存在相互作用力,有助于形成结构稳定、亲和性强的MIPs。利用扫描电镜观测不同制备条件下印迹聚合物的表观形貌,发现溶剂用量为30mL、乳化剂用量为12mg时制备的聚合物形貌较优异。吸附实验表明MIPs对TNT的吸附量随着TNT初始浓度的增加而增加,140min后达到最大吸附量的95%。MIPs对TNT的分离常数远大于RDX和DNT,对RDX和DNT的选择性系数均达到4.4以上,说明MIPs对TNT有较好的选择性吸附能力。铁氰化钾探针实验和对TNT的响应曲线验证了电化学传感器的成功制备,该传感器富集3min就达到了最大电流值的94%,5min内达到吸附平衡。TNT浓度在0.1~5mg/mL的范围内与峰电流有良好的线性关系,检出限为0.06mg/mL。MIPs传感器对TNT的电流响应分别为DNT和RDX的3.13倍、3.27倍,说明其对TNT分子具有很强的特异性识别能力。  相似文献   

19.
A novel molecularly imprinted polymer (MIP) designed by molecular dynamics (MD) simulations was successfully prepared with norfloxacin as a template molecule, methyl acrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a crosslinker. According to the theoretical prediction and experimental preparation methods, three kinds of molecular imprinting materials were designed and synthesized with MD simulations and molecular imprinting technology. The best ratio of the template to the functional monomer to the crosslinker was 1:8:40 in these studies. The experimental results illustrate that the MD simulations were credible in compounding the components of the MIPs. The structure of the prepared polymers were characterized with various methods. To analyze the adsorption performances, many kinds of static adsorption tests, including kinetic, isotherm, and selectivity tests, were used. The results indicate that the novel adsorbents conformed to the pseudo–second‐order kinetic equation and followed the Langmuir isotherm model. The adsorption amounts of MIP2 at a ratio of 1:8:40 were about 29.35 mg/g at 298 K. The selective adsorption and reusable performance of norfloxacin were excellent. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42817.  相似文献   

20.
The objective of this study was to identify a kind of molecular imprinting polymer (MIP) which was suitable for recognizing naringin (NG) in aqueous medium. Based on two crosslinkers (hexamethylene diisocyanate and epichlorohydrin) and two polymerization methods (solution polymerization and emulsion polymerization), four non‐covalent naringin‐β‐cyclodextrine (NG‐β‐CD) imprinted polymers were prepared by using β‐CD as a functional monomer and NG as a template molecule. The binding property and selectivity were evaluated by equilibrium binding experiments. These demonstrated that all the sites in the MIPs show good selective binding ability for NG from naringin dihydrochalcone, a structurally similar molecule. Of the four MIPs, rod‐like 3# MIP which was prepared by emulsion polymerization using hexamethylene diisocyanate as crosslinker exhibited the highest selectivity, its imprinting factor α being 1.53. Scatchard analysis of 3# MIP suggests that there are two classes of binding sites during the MIP's recognition of NG. Additionally, the 3# MIP could be used at least five times without any loss in sorption capacity. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号