首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
High‐performance, blue, phosphorescent organic light‐emitting diodes (PhOLEDs) are achieved by orthogonal solution‐processing of small‐molecule electron‐transport material doped with an alkali metal salt, including cesium carbonate (Cs2CO3) or lithium carbonate (Li2CO3). Blue PhOLEDs with solution‐processed 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) electron‐transport layer (ETL) doped with Cs2CO3 show a luminous efficiency (LE) of 35.1 cd A?1 with an external quantum efficiency (EQE) of 17.9%, which are two‐fold higher efficiency than a BPhen ETL without a dopant. These solution‐processed blue PhOLEDs are much superior compared to devices with vacuum‐deposited BPhen ETL/alkali metal salt cathode interfacial layer. Blue PhOLEDs with solution‐processed 1,3,5‐tris(m‐pyrid‐3‐yl‐phenyl)benzene (TmPyPB) ETL doped with Cs2CO3 have a luminous efficiency of 37.7 cd A?1 with an EQE of 19.0%, which is the best performance observed to date in all‐solution‐processed blue PhOLEDs. The results show that a small‐molecule ETL doped with alkali metal salt can be realized by solution‐processing to enhance overall device performance. The solution‐processed metal salt‐doped ETLs exhibit a unique rough surface morphology that facilitates enhanced charge‐injection and transport in the devices. These results demonstrate that orthogonal solution‐processing of metal salt‐doped electron‐transport materials is a promising strategy for applications in various solution‐processed multilayered organic electronic devices.  相似文献   

2.
The synthesis, photophysics, cyclic voltammetry, and highly efficient blue electroluminescence of a series of four new n‐type conjugated oligomers, 6,6′‐bis(2,4‐diphenylquinoline) (B1PPQ), 6,6′‐bis(2‐(4‐tert‐butylphenyl)‐4‐phenylquinoline) (BtBPQ), 6,6′‐bis(2‐p‐biphenyl)‐4‐phenylquinoline) (B2PPQ), and 6,6′‐bis((3,5‐diphenylbenzene)‐4‐phenylquinoline) (BDBPQ) is reported. The oligoquinolines have high glass‐transition temperatures (Tg ≥ 133 °C), reversible electrochemical reduction, and high electron affinities (2.68–2.81 eV). They emit blue photoluminescence with 0.73–0.94 quantum yields and 1.06–1.42 ns lifetimes in chloroform solutions. High‐performance organic light‐emitting diodes (OLEDs) with excellent blue chromaticity coordinates are achieved from all the oligoquinolines. OLEDs based on B2PPQ as the blue emitter give the best performance with a high brightness (19 740 cd m–2 at 8.0 V), high efficiency (7.12 cd A–1 and 6.56 % external quantum efficiency at 1175 cd m–2), and excellent blue color purity as judged by the Commission Internationale de L'Eclairage (CIE) coordinates (x = 0.15,y = 0.16). These results represent the best efficiency of blue OLEDs from neat fluorescent organic emitters reported to date. These results demonstrate the potential of oligoquinolines as emitters and electron‐transport materials for developing high‐performance blue OLEDs.  相似文献   

3.
The effect of solution‐processed p‐type doping of hole‐generation layers (HGLs) and electron‐transporting layer (ETLs) are systematically investigated on the performance of solution‐processable alternating current (AC) field‐induced polymer EL (FIPEL) devices in terms of hole‐generation capability of HGLs and electron‐transporting characteristics of ETLs. A variety of p‐type doping conjugated polymers and a series of solution‐processed electron‐transporting small molecules are employed. It is found that the free hole density in p‐type doping HGLs and electron mobility of solution‐processed ETLs are directly related to the device performance, and that the hole‐transporting characteristics of ETLs also play an important role since holes need to be injected from electrode through ETLs to refill the depleted HGLs in the positive half of the AC cycle. As a result, the best FIPEL device exhibits exceptional performance: a low turn‐on voltage of 12 V, a maximum luminance of 20 500 cd m?2, a maximum current and power efficiency of 110.7 cd A?1 and 29.3 lm W?1. To the best of the authors' knowledge, this is the highest report to date among FIPEL devices driven by AC voltage.  相似文献   

4.
High performance solution‐processed fluorescent and phosphorescent organic light emitting diodes (OLEDs) are achieved by water solution processing of lacunary polyoxometalates used as novel electron injection/transport materials with excellent electron mobilities and hole blocking capabilities. Green fluorescent OLEDs using poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐co‐(1,4‐benzo‐{2,1′,3}‐thiadiazole)] (F8BT) as the emissive layer and our polyoxometalates as electron transport/hole blocking layers give a luminous efficiency up to 6.7 lm W?1 and a current efficiency up to 14.0 cd A?1 which remained nearly stable for about 500 h of operation. In addition, blue phosphorescent OLEDs (PHOLEDs) using poly(9‐vinylcarbazole) (PVK):1,3‐bis[2‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazo‐5‐yl]benzene (OXD‐7) as a host and 10.0 wt% FIrpic as the blue dopant in the emissive layer and a polyoxometalate as electron transport material give 12.5 lm W?1 and 30.0 cd A?1 power and luminous efficiency, respectively, which are among the best performance values observed to date for all‐solution processed blue PHOLEDs. The lacunary polyoxometalates exhibit unique properties such as low electron affinity and high ionization energy (of about 3.0 and 7.5 eV, respectively) which render them as efficient electron injection/hole blocking layers and, most importantly, exceptionally high electron mobility of up to 10?2 cm2 V?1 s?1.  相似文献   

5.
Solution‐processed oxide thin films are actively pursued as hole‐injection layers (HILs) in quantum‐dot light‐emitting diodes (QLEDs), aiming to improve operational stability. However, device performance is largely limited by inefficient hole injection at the interfaces of the oxide HILs and high‐ionization‐potential organic hole‐transporting layers. Solution‐processed NiOx films with a high and stable work function of ≈5.7 eV achieved by a simple and facile surface‐modification strategy are presented. QLEDs based on the surface‐modified NiOx HILs show driving voltages of 2.1 and 3.3 V to reach 1000 and 10 000 cd m?2, respectively, both of which are the lowest among all solution‐processed LEDs and vacuum‐deposited OLEDs. The device exhibits a T95 operational lifetime of ≈2500 h at an initial brightness of 1000 cd m?2, meeting the commercialization requirements for display applications. The results highlight the potential of solution‐processed oxide HILs for achieving efficient‐driven and long‐lifetime QLEDs.  相似文献   

6.
A series of tetraarylsilane compounds, namely p‐BISiTPA ( 1 ), m‐BISiTPA ( 2 ), p‐OXDSiTPA ( 3 ), m‐OXDSiTPA ( 4 ), are designed and synthesized by incorporating electron‐donating arylamine and electron‐accepting benzimidazole or oxadiazole into one molecule via a silicon‐bridge linkage mode. Their thermal, photophysical and electrochemical properties can be finely tuned through the different groups and linking topologies. The para‐disposition compounds 1 and 3 display higher glass transition temperatures, slightly lower HOMO levels and triplet energies than their meta‐disposition isomers 2 and 4 , respectively. The silicon‐interrupted conjugation of the electron‐donating and electron‐accepting segments gives these materials the following advantages: i) relative high triplet energies in the range of 2.69–2.73 eV; ii) HOMO/LUMO levels of the compounds mainly depend on the electron‐donating and electron‐accepting groups, respectively; iii) bipolar transporting feature as indicated by hole‐only and electron‐only devices. These advantages make these materials ideal universal hosts for multicolor phosphorescent OLEDs. 1 and 3 have been demonstrated as universal hosts for blue, green, orange and white electrophosphorescence, exhibiting high efficiencies and low efficiency roll‐off. For example, the devices hosted by 1 achieve maximum external quantum efficiencies of 16.1% for blue, 22.7% for green, 20.5% for orange, and 19.1% for white electrophosphorescence. Furthermore, the external quantum efficiencies are still as high as 14.2% for blue, 22.4% for green, 18.9% for orange, and 17.4% for white electrophosphorescence at a high luminance of 1000 cd m?2. The two‐color, all‐phosphor white device hosted by 3 acquires a maximum current efficiency of 51.4 cd A?1, and a maximum power efficiency of 51.9 lm W?1. These values are among the highest for single emitting layer white PhOLEDs reported till now.  相似文献   

7.
Two coordination complex emitters as well as host materials Be(PPI)2 and Zn(PPI)2 (PPI = 2‐(1‐phenyl‐1H‐phenanthro[9,10‐d]imidazol‐2‐yl)phenol) are designed, synthesized, and characterized. The incorporation of the metal atom leads to a twisted conformation and rigid molecular structure, which improve the thermal stability of Be(PPI)2 and Zn(PPI)2 with high Td and Tg at around 475 and 217 °C, respectively. The introduction of the electron‐donating phenol group results in the emission color shifting to the deep‐blue region and the emission maximum appears at around 429 nm. This molecular design strategy ensures that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) HOMO and LUMO of Be(PPI)2 and Zn(PPI)2 localize on the different moieties of the molecules. Therefore, the two complexes have an ambipolar transport property and a small singlet–triplet splitting of 0.35 eV for Be(PPI)2 and 0.21 eV for Zn(PPI)2. An undoped deep‐blue fluorescent organic light‐emitting device (OLED) that uses Be(PPI)2 as emitter exhibits a maximum power efficiency of 2.5 lm W?1 with the CIE coordinates of (0.15, 0.09), which are very close to the National Television Standards Committee (NTSC) blue standard (CIE: 0.14, 0.08). Green and red phosphorescent OLEDs (PhOLEDs) that use Be(PPI)2 and Zn(PPI)2 as host materials show high performance. Highest power efficiencies of 67.5 lm W?1 for green PhOLEDs and 21.7 lm W?1 for red PhOLEDs are achieved. In addition, the Be(PPI)2‐based devices show low‐efficiency roll‐off behavior, which is attributed to the more balanced carrier‐transport property of Be(PPI)2.  相似文献   

8.
The exciplex forming co‐host with phosphorescent dopant system has potential to realize highly efficient phosphorescent organic light emitting didoes (PhOLEDs). However, the exciplex forming co‐host for blue phosphorescent OLEDs has been rarely introduced because of higher triplet level of the blue dopant than green and red dopants. In this work, a novel exciplex forming co‐host with high triplet energy level is developed by mixing a phosphine oxide based electron transporting material, PO‐T2T, and a hole transporting material, N,N′‐dicarbazolyl‐3,5‐benzene (mCP). Photo‐physical analysis shows that the exciplexes are formed efficiently in the host and the energy transfer from the exciplex to blue phosphorescent dopant (iridium(III)bis[(4,6‐difluorophenyl)‐pyridinato‐N,C2′]picolinate; FIrpic) is also efficient, enabling the triplet harvest without energy loss. As a result, an unprecedented high performance blue PhOLED with the exciplex forming co‐host is demonstrated, showing a maximum external quantum efficiency (EQE) of 30.3%, a maximum power efficiency of 66 lm W?1, and low driving voltage of 2.75 at 100 cd m?2, 3.29 V at 1000 cd m?2, and 4.65 V at 10 000 cd m?2, respectively. The importance of the exciton confinement in the exciplex forming co‐host is further investigated which is directly related to the performance of PhOLEDs.  相似文献   

9.
A group of bipyridine/carbazole hybrid compounds, namely m‐BPyDCz, p‐BPyDCz, m‐BPySCz, and p‐BPySCz, are designed and developed as host materials for phosphorescent organic light‐emitting diodes (PhOLEDs). By tuning the p/n molar ratio and para‐/meta‐ substitution style, scorpion‐, Y‐, Z‐, and L‐shape molecular conformations are generated. In virtue of intermolecular hydrogen bonds and π–π interaction, these compounds form different molecular packing patterns in their single crystals. Particularly the Z‐shaped m‐BPySCz achieves 3D gridding packing with regular and ordered carbazole and pyridine columns as carrier hoping channels and larger intermolecular distance, which not only guarantees charge balance but also suppresses exciton quenching. Consequently the m‐BPySCz hosted sky‐blue and green PhOLEDs exhibit high external quantum efficiencies of 27.3% and 28.0% and low efficiency roll‐offs of 8.1% (at brightness of 1000 cd m?2 for blue) and 14.3% (at 10000 cd m?2 for green), all superior to other analogs and many reported host materials. The excellent performance of m‐BPySCz versus its lowest molecular weight and lowest amorphous stability manifests that the molecular packing style of host material dominates to determine the overall performance of PhOLEDs and the 3D gridding packing mode of zig‐zag conformation may be one ideal strategy to eliminate efficiency roll‐off in PhOLEDs.  相似文献   

10.
The host materials designed for highly efficient white phosphorescent organic light‐emitting diodes (PhOLEDs) with power efficiency (PE) >50 lm W‐1 and low efficiency roll‐off are very rare. In this work, three new indolocarbazole‐based materials (ICDP, 4ICPPy, and 4ICDPy) are presented composed of 6,7‐dimethylindolo[3,2‐a]carbazole and phenyl or 4‐pyridyl group for hosting blue, green, and red phosphors. Among this three host materials, 4ICDPy‐based devices reveal the best electroluminescent performance with maximum external quantum efficiencies (EQEs) of 22.1%, 27.0%, and 25.3% for blue (FIrpic), green (fac‐Ir(ppy)3), and red ((piq)2Ir(acac)) PhOLEDs. A two‐color and single‐emitting‐layer white organic light‐emitting diode hosted by 4ICDPy with FIrpic and Ir(pq)3 as dopants achieves high EQE of 20.3% and PE of 50.9 lm W?1 with good color stability; this performance is among the best for a single‐emitting‐layer white PhOLEDs. All 4ICDPy‐based devices show low efficiency roll‐off probably due to the excellent balanced carrier transport arisen from the bipolar character of 4ICDPy.  相似文献   

11.
Two host materials of {4‐[diphenyl(4‐pyridin‐3‐ylphenyl)silyl]phenyl}diphenylamine (p‐PySiTPA) and {4‐[[4‐(diphenylphosphoryl)phenyl](diphenyl)silyl]phenyl}diphenylamine (p‐POSiTPA), and an electron‐transporting material of [(diphenylsilanediyl)bis(4,1‐phenylene)]bis(diphenylphosphine) dioxide (SiDPO) are developed by incorporating appropriate charge transporting units into the tetraarylsilane skeleton. The host materials feature both high triplet energies (ca. 2.93 eV) and ambipolar charge transporting nature; the electron‐transporting material comprising diphenylphosphine oxide units and tetraphenylsilane skeleton exhibits a high triplet energy (3.21 eV) and a deep highest occupied molecular orbital (HOMO) level (‐6.47 eV). Using these tetraarylsilane‐based functional materials results in a high‐efficiency blue phosphorescent device with a three‐organic‐layer structure of 1,1‐bis[4‐[N,N‐di(p‐tolyl)‐amino]phenyl]cyclohexane (TAPC)/p‐POSiTPA: iridium(III) bis(4′,6′‐difluorophenylpyridinato)tetrakis(1‐pyrazolyl)borate (FIr6)/SiDPO that exhibits a forward‐viewing maximum external quantum efficiency (EQE) up to 22.2%. This is the first report of three‐organic‐layer FIr6‐based blue PhOLEDs with the forward‐viewing EQE over 20%, and the device performance is among the highest for FIr6‐based blue PhOLEDs even compared with the four or more than four organic‐layer devices. Furthermore, with the introduction of bis(2‐(9,9‐diethyl‐9H‐fluoren‐2‐yl)‐1‐phenyl‐1H‐benzoimidazol‐N,C3)iridium acetylacetonate [(fbi)2Ir(acac)] as an orange emitter, an all‐phosphor warm‐white PhOLED achieves a peak power efficiency of 47.2 lm W?1, which is close to the highest values ever reported for two‐color white PhOLEDs.  相似文献   

12.
n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL.  相似文献   

13.
A series of solution‐processible 2,2′‐dimethyl‐biphenyl cored dendrimers, namely G1MP, G2MP, and G3MP, is designed and synthesized by tuning the generation of periphery carbazole dendron. The resulting dendrimers all show excellent solubility in common organic solvents, and their high‐quality thin films can be formed via spin‐coating with a root‐mean‐square roughness in the range of 0.38–0.54 nm. G3MP, which contains the third‐generation carbazole dendron, has the greatest potential among those made here as an ideal universal host for multicolored triplet emitters. G3MP exhibits good thermal stability, with a glass transition temperature of 368 °C, a triplet energy as high as 2.85 eV enough to prevent the loss of triplet excitons, and suitable HOMO/LUMO levels of –5.30/–2.11 eV to facilitate both hole and electron injection and transport. When using G3MP as the host, highly efficient deep‐blue, blue, green, and red phosphorescent organic light‐emitting diodes (PhOLEDs) are successfully demonstrated, revealing a maximum luminous efficiency up to 18.2, 28.2, 54.0, and 12.7 cd A–1 with the corresponding Commission Internationale de L'Eclairage (CIE) coordinates of (0.15, 0.23), (0.15, 0.35), (0.38, 0.59), and (0.64, 0.34), respectively. The state‐of‐art performance indicates that dendritic hosts have a favorable prospect of applications in solution‐processed white PhOLEDs and full‐color displays.  相似文献   

14.
A group of dendrimers with oligo‐carbazole dendrons appended at 4,4′‐ positions of biphenyl core are synthesized for use as host materials for solution‐processible phosphorescent organic light‐emitting diodes (PHOLEDs). In comparison with the traditional small molecular host 4,4′‐N,N′‐dicarbazolebiphenyl (CBP), the dendritic conformation affords these materials extra merits including amorphous nature with extremely high glass transition temperatures (ca. 376 °C) and solution‐processibility, but inherent the identical triplet energies (2.60–2.62 eV). In comparison with the widely‐used polymeric host polyvinylcarbazole (PVK), these dendrimers possess much higher HOMO levels (–5.61 to –5.42 eV) that facilitate efficient hole injection and are favorable for high power efficiency in OLEDs. The agreeable properties and the solution‐processibility of these dendrimers makes it possible to fabricate highly efficient PHOLEDs by spin coating with the dendimers as phosphorescent hosts. The green PHOLED containing Ir(ppy)3 (Hppy = 2‐phenyl‐pyridine) dopant exhibits high peak efficiencies of 38.71 cd A?1 and 15.69 lm W?1, which far exceed those of the control device with the PVK host (27.70 cd A?1 and 9.6 lm W?1) and are among the best results for solution‐processed green PHOLEDs ever reported. The versatility of these dendrimer hosts can be spread to orange PHOLEDs and high efficiencies of 32.22 cd A?1 and 20.23 lm W?1 are obtained, among the best ever reported for solution‐processed orange PHOLEDs.  相似文献   

15.
A new series of full hydrocarbons, namely 4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(N,N‐diphenylaniline) (DTPAFB), N,N′‐(4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(4,1‐phenylene))bis(N‐phenylnaphthalen‐1‐amine) (DNPAFB), 1,3‐bis(9‐(4‐(9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, and 1,3‐bis(9‐(4‐(3,6‐di‐tert‐butyl‐9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, featuring a highly twisted tetrahedral conformation, are designed and synthesized. Organic light‐emitting diodes (OLEDs) comprising DNPAFB and DTPAFB as hole transporting layers and tris(quinolin‐8‐yloxy)aluminum as an emitter are made either by vacuum deposition or by solution processing, and show much higher maximum efficiencies than the commonly used N,N′‐di(naphthalen‐1‐yl)‐N,N′‐diphenylbiphenyl‐4,4′‐diamine device (3.6 cd A?1) of 7.0 cd A?1 and 6.9 cd A?1, respectively. In addition, the solution processed blue phosphorescent OLEDs employing the synthesized materials as hosts and iridium (III) bis[(4,6‐di‐fluorophenyl)‐pyridinato‐N, C2] picolinate (FIrpic) phosphor as an emitter present exciting results. For example, the DTPAFB device exhibits a brightness of 47 902 cd m?2, a maximum luminescent efficiency of 24.3 cd A?1, and a power efficiency of 13.0 lm W?1. These results show that the devices are among the best solution processable blue phosphorescent OLEDs based on small molecules. Moreover, a new approach to constructing solution processable small molecules is proposed based on rigid and bulky fluorene and carbazole moieties combined in a highly twisted configuration, resulting in excellent solubility as well as chemical miscibility, without the need to introduce any solubilizing group such as an alkyl or alkoxy chain.  相似文献   

16.
Grafting six fluorene units to a benzene ring generates a new highly twisted core of hexakis(fluoren‐2‐yl)benzene. Based on the new core, six‐arm star‐shaped oligofluorenes from the first generation T1 to third generation T3 are constructed. Their thermal, photophysical, and electrochemical properties are studied, and the relationship between the structures and properties is discussed. Simple double‐layer electroluminescence (EL) devices using T1–T3 as non‐doped solution‐processed emitters display deep‐blue emissions with Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.08) for T1 , (0.16, 0.08) for T2 , and (0.16, 0.07) for T3 . These devices exhibit excellent performance, with maximum current efficiency of up to 5.4 cd A?1, and maximum external quantum efficiency of up to 6.8%, which is the highest efficiency for non‐doped solution‐processed deep‐blue organic light‐emitting diodes (OLEDs) based on starburst oligofluorenes, and is even comparable with other solution‐processed deep‐blue fluorescent OLEDs. Furthermore, T2‐ and T3‐ based devices show striking blue EL color stability independent of driving voltage. In addition, using T0–T3 as hole‐transporting materials, the devices of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS)/ T0–T3 /tris(8‐hydroxyquinolinato)aluminium (Alq3)/LiF/Al achieve maximum current efficiencies of 5.51–6.62 cd A?1, which are among the highest for hole‐transporting materials in identical device structure.  相似文献   

17.
Two new bipolar host molecules composed of hole‐transporting carbazole and electron‐transporting cyano ( CzFCN ) or oxadiazole ( CzFOxa )‐substituted fluorenes are synthesized and characterized. The non‐conjugated connections, via an sp3‐hybridized carbon, effectively block the electronic interactions between electron‐donating and ‐accepting moieties, giving CzFCN and CzFOxa bipolar charge transport features with balanced mobilities (10?5 to 10?6 cm2 V?1 s?1). The meta–meta configuration of the fluorene‐based acceptors allows the bipolar hosts to retain relatively high triplet energies [ET = 2.70 eV ( CzFOxa ) and 2. 86 eV ( CzFCN )], which are sufficiently high for hosting blue phosphor. Using a common device structure – ITO/PEDOT:PSS/DTAF/TCTA/host:10% dopants (from blue to red)/DPPS/LiF/Al – highly efficient electrophosphorescent devices are successfully achieved. CzFCN ‐based devices demonstrate better performance characteristics, with maximum ηext of 15.1%, 17.9%, 17.4%, 18%, and 20% for blue (FIrpic), green [(PPy)2Ir(acac)], yellowish‐green [m‐(Tpm)2Ir(acac)], yellow [(Bt)2Ir(acac)], and red [Os(bpftz)2(PPhMe2)2, OS1], respectively. In addition, combining yellowish‐green m‐(Tpm)2Ir(acac) with a blue emitter (FIrpic) and a red emitter (OS1) within a single emitting layer hosted by bipolar CzFCN , three‐color electrophosphorescent WOLEDs with high efficiencies (17.3%, 33.4 cd A?1, 30 lm W ?1), high color stability, and high color‐rendering index (CRI) of 89.7 can also be realized.  相似文献   

18.
Three triphenyl benzene derivatives of 1,3,5‐tri(m‐pyrid‐2‐yl‐phenyl)benzene (Tm2PyPB), 1,3,5‐tri(m‐pyrid‐3‐yl‐phenyl)benzene (Tm3PyPB) and 1,3,5‐tri(m‐pyrid‐4‐yl‐phenyl)benzene (Tm4PyPB), containing pyridine rings at the periphery, are developed as electron‐transport and hole/exciton‐blocking materials for iridium(III) bis(4,6‐(di‐fluorophenyl)pyridinato‐N,C2′)picolinate (FIrpic)‐based blue phosphorescent organic light‐emitting devices. Their highest occupied molecular orbital and lowest unoccupied molecular orbital (LUMO) energy levels decrease as the nitrogen atom of the pyridine ring moves from position 2 to 3 and 4; this is supported by both experimental results and density functional theory calculations, and gives improved electron‐injection and hole‐blocking properties. They exhibit a high electron mobility of 10?4–10?3 cm2 V?1 s?1 and a high triplet energy level of 2.75 eV. Confinement of FIrpic triplet excitons is strongly dependent on the nitrogen atom position of the pyridine ring. The second exponential decay component in the transient photoluminescence decays of Firpic‐doped films also decreases when the position of the nitrogen atom in the pyridine ring changes. Reduced driving voltages are obtained when the nitrogen atom position changes because of improved electron injection as a result of the reduced LUMO level, but a better carrier balance is achieved for the Tm3PyPB‐based device. An external quantum efficiency (EQE) over 93% of maximum EQE was achieved for the Tm4PyPB‐based device at an illumination‐relevant luminance of 1000 cd m?2, indicating reduced efficiency roll‐off due to better confinement of FIrpic triplet excitons by Tm4PyPB in contrast to Tm2PyPB and Tm3PyPB.  相似文献   

19.
A highly efficient blue‐light emitter, 2‐tert‐butyl‐9,10‐bis[4′‐(diphenyl‐phosphoryl)phenyl]anthracene (POAn) is synthesized, and comprises electron‐deficient triphenylphosphine oxide side groups appended to the 9‐ and 10‐positions of a 2‐tert‐butylanthracene core. This sophisticated anthracene compound possesses a non‐coplanar configuration that results in a decreased tendency to crystallize and weaker intermolecular interactions in the solid state, leading to its pronounced morphological stability and high quantum efficiency. In addition to serving as an electron‐transporting blue‐light‐emitting material, POAn also facilitates electron injection from the Al cathode to itself. Consequently, simple double‐layer devices incorporating POAn as the emitting, electron‐transporting, and ‐injecting material produce bright deep‐blue lights having Commission Internationale de L'Eclairage coordinates of (0.15,0.07). The peak electroluminescence performance was 4.3% (2.9 cd A?1). For a device lacking an electron‐transport layer or alkali fluoride, this device displays the best performance of any such the deep‐blue organic light‐emitting diodes reported to date.  相似文献   

20.
A series of fluorene‐based oligomers with novel spiro‐annulated triarylamine structures, namely DFSTPA, TFSTPA, and TFSDTC, are synthesized by a Suzuki cross‐coupling reaction. The spiro‐configuration molecular structures lead to very high glass transition temperatures (197–253 °C) and weak intermolecular interactions, and consequently the structures retain good morphological stability and high fluorescence quantum efficiencies(0.69–0.98). This molecular design simultaneously solves the spectral stability problems and hole‐injection and transport issues for fluorene‐based blue‐light‐emitting materials. Simple double‐layer electroluminescence (EL) devices with a configuration of ITO/TFSTPA (device A) or TFSDTC (device B)/ TPBI/LiF/Al, where TFSTPA and TFSDTC serve as hole‐transporting blue‐light‐emitting materials, show a deep‐blue emission with a peak around 432 nm, and CIE coordinates of (0.17, 0.12) for TFSTPA and (0.16, 0.07) for TFSDTC, respectively, which are very close to the National Television System Committee (NTSC) standard for blue (0.15, 0.07). The maximum current efficiency/external quantum efficiencies are 1.63 cd A?1/1.6% for device A and 1.91 cd A?1/2.7% for device B, respectively. In addition, a device with the structure ITO/DFSTPA/Alq3/LiF/Al, where DFSTPA acts as both the hole‐injection and ‐transporting material, is shown to achieve a good performance, with a maximum luminance of 14 047 cd m?2, and a maximum current efficiency of 5.56 cd A?1. These values are significantly higher than those of devices based on commonly usedN,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐[1,1′‐biphenyl]‐4,4′‐diamine (NPB) as the hole‐transporting layer (11 738 cd m?2 and 3.97 cd A?1) under identical device conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号