首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: An experimental study was conducted to evaluate the tear energy of unfilled and 25 phr carbon black‐filled natural rubber with varying loading rates. The variation of the tear energy with far‐field sample strain rate between 0.01 to 10 s?1 was found to be different from tensile strip and pure shear specimens. Above a sample strain rate of 10 s?1, the tear energy calculated from either specimen was comparable. The differences in the tear energy derived from the tensile strip and pure shear specimens were attributed to differences in the local crack tip stress state and strengthening of the material due to strain‐induced crystallisation. Both of these factors resulted in crack speeds 3–4 times higher in the pure shear specimen as compared to the tensile strip specimen. Finite element analysis (FEA) indicated that fracture would initiate at the crack tip either when the strain energy density approached the material toughness or when the maximum principal stress and strain approached the material tensile strength and fracture strain, respectively. It was concluded that these parameters would be better than the tear energy in predicting fracture of natural rubber under dynamic loading.  相似文献   

2.
Fiber‐shaped supercapacitors (FSCs) are promising energy storage solutions for powering miniaturized or wearable electronics. However, the scalable fabrication of fiber electrodes with high electrical conductivity and excellent energy storage performance for use in FSCs remains a challenge. Here, an easily scalable one‐step wet‐spinning approach is reported to fabricate highly conductive fibers using hybrid formulations of Ti3C2Tx MXene nanosheets and poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate. This approach produces fibers with a record conductivity of ≈1489 S cm?1, which is about five times higher than other reported Ti3C2Tx MXene‐based fibers (up to ≈290 S cm?1). The hybrid fiber at ≈70 wt% MXene shows a high volumetric capacitance (≈614.5 F cm?3 at 5 mV s?1) and an excellent rate performance (≈375.2 F cm?3 at 1000 mV s?1). When assembled into a free‐standing FSC, the energy and power densities of the device reach ≈7.13 Wh cm?3 and ≈8249 mW cm?3, respectively. The excellent strength and flexibility of the hybrid fibers allow them to be wrapped on a silicone elastomer fiber to achieve an elastic FSC with 96% capacitance retention when cyclically stretched to 100% strain. This work demonstrates the potential of MXene‐based fiber electrodes and their scalable production for fiber‐based energy storage applications.  相似文献   

3.
Abstract

The effects of the grain structure direction on the impact properties and dislocation substructure of 6061-T6 aluminium alloy are investigated under room temperature conditions and strain rates of 1×103, 3×103 and 5×103 s?1 using a split-Hopkinson pressure bar system. The impact tests are performed using specimens machined from rolled 6061-T6 plates in the longitudinal, transverse and through thickness directions respectively. The results show that for all specimens, the flow stress increases with increasing strain rate. Furthermore, for all strain rates, the highest flow stress occurs in the transverse specimen. For strain rates of 1×103 and 3×103 s?1, the flow stress in the through thickness specimen is greater than that in the longitudinal specimen. However, at a strain rate of 5×103 s?1, the flow stress in the longitudinal specimen is higher than that in the through thickness specimen due to a greater dislocation multiplication rate. For all three grain structure directions, the strain rate sensitivity increases with increasing strain rate, but decreases with increasing true strain. The highest strain rate sensitivity is observed in the longitudinal specimen at strain rates of 3×103 to 5×103 s?1. The dislocation density increases markedly with increasing strain rate. Moreover, the square root of the dislocation density varies as a linear function of the flow stress in accordance with the Bailey–Hirsch relationship. The strengthening effect produced by the increased dislocation density is particularly evident in the transverse specimen, followed by the longitudinal specimen and the through thickness specimen.  相似文献   

4.
Abstract: This article describes the experimental methodology used in overcoming the challenges of performing tests and recording results on specimens, which are suitable for such a wide range of test conditions. Uniaxial tensile tests were conducted on aluminium alloy 6082‐T352 at varying temperatures and strain rates to validate testing techniques and to determine the effect of these parameters upon this material. The applied strain rate varied over several orders of magnitude – using a screw‐driven tensometer for quasi‐static loading (6.9 × 10?4 s?1), a hydraulic piston rig for moderate strain rate (4.0 × 101 s?1) and a tensile Hopkinson bar for high strain rate (1.5 × 103 s?1). Temperature was varied using a heat gun, and the air temperature was measured using a thermocouple in the hot air stream. Specimen temperature is determined by finite element modelling, and this correlates well with other work. Although it would have been possible to improve the design of individual tests for specific test conditions, an important objective was to conduct the entire series of tests in as consistent a manner as possible. The procedure for characterising the stress–strain behaviour for this material under these different loading conditions is also considered in some detail, as the real material behaviour deviates from simplified elasto‐plastic material models. Results presented for Al 6082 samples show a slight increase in yield stress with increasing strain rate, and a decrease in yield stress with increasing temperature.  相似文献   

5.
This study reports a novel forging process to fabricate bulk fine‐grained (grain size ≈ 1 µm) Ti–6Al–4V alloy, in which temperatures near the β transus (Tβ) and strain rates around 0.15 s?1 are used for the deformation. The formation of fine‐grained microstructure is mainly result from the deformation‐induced precipitation of α grains from the β matrix.  相似文献   

6.
In order to investigate the hot deformation mechanism of a newly development Ni3Al‐based superalloy, hot compression tests at temperatures between 1100 °C–1250 °C and the strain rates of 0.001 s?1–1.0 s?1 were conducted. The results show that the curves of true stress‐strain indicate the thermal deformation is a typical dynamic recrystallization process, which the peak stresses and steady‐state stresses increase with decreasing temperatures and increasing strain rates. The softening mechanism is mainly dynamic recrystallization. The experimental data of peak stresses and steady‐state stresses is employed to calculate the constants in the Arrhenius equation. The steady‐state stresses are considered more reasonable for solving the parameters in the Arrhenius equation. Based on the constitutive equation obtained, the calculated values of steady‐state stresses match well with the experimental values at the strain rates of 0.001 s?1, 0.01 s?1 and 0.1 s?1, whereas there exists much deviation at 1.0 s?1. For the sake of accuracy of predicted results at 1.0 s?1 strain rate, a modified Zener‐Hollomon parameter Z’ is introduced. The results show that the modified constitutive equations established in this study could well predict the value of steady‐state stress in hot deformation of the newly development Ni3Al‐based alloy.  相似文献   

7.
High temperature synthesis and treatments are ubiquitous in chemical reactions and material manufacturing. However, conventional sintering furnaces are bulky and inefficient with a narrow temperature range (<1500 K) and slow heating rates (<100 K min?1), which are undesirable for many applications that require transient heating to produce ideal nanostructures. Herein, a 3D‐printed, miniaturized reactor featuring a dense micro‐grid design is developed to maximize the material contact and therefore acheive highly efficient and controllable heating. By 3D printing, a versatile, miniaturized reactor with microscale features can be constructed, which can reach a much wider temperature range (up to ≈3000 K) with ultrafast heating/cooling rates of ≈104 K s?1. To demonstrate the utility of the design, rapid and batch synthesis of Ru nanoparticles supported in ordered mesoporous carbon is performed by transient heating (1500 K, 500 ms). The resulting ultrafine and uniform Ru nanoparticles (≈2 nm) can serve as a cathode in Li‐CO2 batteries with good cycling stability. The miniaturized reactor, with versatile shape design and highly controllable heating capabilities, provides a platform for nanocatalyst synthesis with localized and ultrafast heating toward high temperatures that is otherwise challenging to achieve.  相似文献   

8.
The stress–strain relationship of 5052 aluminium alloy was investigated via quasi-static tensile tests and split Hopkinson pressure bar tests. The specimens were exposed to various temperatures (25–500°C) and strain rates (10?4–0.7?×?104?s?1). At strain rates ranging from 0.001 to 3000?s?1, the material underwent significant work hardening. When the strain rate exceeded 5000?s?1, the work hardening effect decreased and the flow stress was relatively constant. The Johnson–Cook constitutive model was modified to describe the deformation behaviour of the material subjected to high temperatures and strain rates. The accuracy of the modified model was verified through ballistic impact testing.  相似文献   

9.
Abstract

Microstructure evolution of the homogenised ZK40 magnesium alloy was investigated during compression in the temperature range of 250–400°C and at the strain rate range of 0·01–50 s?1. At a higher strain rate (?10 s?1), dynamic recrystallisation developed extensively at grain boundaries and twins, resulting in a more homogeneous microstructure than the other conditions. The hot deformation characteristics of ZK40 exhibited an abnormal relationship with the strain rate, i.e., the hot workability increased with increasing the strain rate. However, the dynamic recrystallisation grain size was almost the same with increasing the temperature at the strain rate of 10 s?1, while it increased obviously at the strain rates of 20 and 50 s?1. Therefore, hot deformation at the strain rate of 10 s?1 and temperature range of 250–400°C was desirable and feasible for the ZK40 alloy.  相似文献   

10.
《Composites Science and Technology》2002,62(10-11):1469-1476
The strain rate dependent behavior of IM7/977-2 carbon/epoxy matrix composite in tension is studied by testing the resin and various laminate configurations at different strain rates. Tensile tests have been conducted with a hydraulic machine at quasi-static strain rates of approximately 10−5 s−1 and intermediate strain rates of about 1 s−1. Tensile high strain rate tests have been conducted with the tensile split Hopkinson bar technique at strain rates of approximately 400–600 s−1. Specimens with identical geometry are used in all the tests. The standard split Hopkinson bar technique is modified to measure strain directly on the specimen. The results show that strain rate has a significant effect on the material response.  相似文献   

11.
Bioinspired methods allowing artificial actuators to perform controllably are potentially important for various principles and may offer fundamental insight into chemistry and engineering. To date, the main challenges persist regarding the achievement of large deformation in fast response‐time and potential‐engineering applications in which electrode materials and structures limit ion diffusion and accumulation processes. Herein, a novel electrochemical actuator is developed that presents both higher electromechanical performances and biomimetic applications based on hierachically structured covalently bridged black phosphorous/carbon nanotubes. The new actuator demonstrates astonishing actuation properties, including low power consumption/strain (0.04 W cm?2 %?1), a large peak‐to‐peak strain (1.67%), a controlled frequency response (0.1–20 Hz), faster strain and stress rates (11.57% s?1; 28.48 MPa s?1), high power (29.11 kW m?3), and energy (8.48 kJ m?3) densities, and excellent cycling stability (500 000 cycles). More importantly, bioinspired applications such as artificial‐claw, wings‐vibrating, bionic‐flower, and hand actuators have been realized. The key to high performances stems from hierachically structured materials with an ordered lamellar structure, large redox activity, and electrochemical capacitance (321.4 F g?1) for ions with smooth diffusion and flooding accommodation, which will guide substantial progress of next‐generation electrochemical actuators.  相似文献   

12.
Single‐walled carbon nanotubes (SWCNTs) are a class of 1D nanomaterials that exhibit extraordinary electrical and optical properties. However, many of their fundamental studies and practical applications are stymied by sample polydispersity. SWCNTs are synthesized in bulk with broad structural (chirality) and geometrical (length and diameter) distributions; problematically, all known post‐synthetic sorting methods rely on ultrasonication, which cuts SWCNTs into short segments (typically <1 µm). It is demonstrated that ultralong (>10 µm) SWCNTs can be efficiently separated from shorter ones through a solution‐phase “self‐sorting”. It is shown that thin‐film transistors fabricated from long semiconducting SWCNTs exhibit a carrier mobility as high as ≈90 cm2 V?1 s?1, which is ≈10 times higher than those which use shorter counterparts and well exceeds other known materials such as organic semiconducting polymers (<1 cm2 V?1 s?1), amorphous silicon (≈1 cm2 V?1 s?1), and nanocrystalline silicon (≈50 cm2 V?1 s?1). Mechanistic studies suggest that this self‐sorting is driven by the length‐dependent solution phase behavior of rigid rods. This length sorting technique shows a path to attain long‐sought ultralong, electronically pure carbon nanotube materials through scalable solution processing.  相似文献   

13.
Compressive strength of ice at impact strain rates   总被引:2,自引:0,他引:2  
The compressive strength of ice was measured at high strain rates of 103 s−1 order of magnitude. Since ice compressive strength is known to be strongly dependent on strain rate, properties corresponding to high strain rates are needed for engineering predictions of the behavior of ice under dynamic crushing scenarios. The split Hopkinson pressure bar (SHPB) apparatus was used to successfully measure compressive strength over a strain rate range of 400–2,600 s−1. Strain rate variation was achieved by adjusting the specimen length and the velocity of the SHPB striker bar; increased velocity and reduced specimen length produced higher strain rates. Since the compressive strength was found to be nearly uniform over the measured strain rate range, an average value of 19.7 MPa is reported. However, when comparing the present results with data in the existing literature spanning several orders of magnitude in strain rate, a trend of continuously increasing strength for strain rates beyond 101 s−1 can be observed.  相似文献   

14.
Despite the recent attention for Li metal anode (LMA) with high theoretical specific capacity of ≈ 3860 mA h g?1, it suffers from not enough practical energy densities and safety concerns originating from the excessive metal load, which is essential to compensate for the loss of Li sources resulting from their poor coulombic efficiencies (CEs). Therefore, the development of high‐performance LMA is needed to realize anode‐minimized Li metal batteries (LMBs). In this study, high‐performance LMAs are produced by introducing a hierarchically nanoporous assembly (HNA) composed of functionalized onion‐like graphitic carbon building blocks, several nanometers in diameter, as a catalytic scaffold for Li‐metal storage. The HNA‐based electrodes lead to a high Li ion concentration in the nanoporous structure, showing a high CE of ≈ 99.1%, high rate capability of 12 mA cm?2, and a stable cycling behavior of more than 750 cycles. In addition, anode‐minimized LMBs are achieved using a HNA that has limited Li content ( ≈ 0.13 mg cm?2), corresponding to 6.5% of the cathode material (commercial NCM622 ( ≈ 2 mg cm?2)). The LMBs demonstrate a feasible electrochemical performance with high energy and power densities of ≈ 510 Wh kgelectrode?1 and ≈ 2760 W kgelectrode?1, respectively, for more than 100 cycles.  相似文献   

15.
The effect of strain rate on deformation microstructures and mechanical properties of Fe–18Cr–8Ni austenitic stainless steel was investigated at strain rates of from 10?3 to 100?s?1. The results indicated that the deformation mechanism of steel changes from transformation induced plasticity (TRIP) to TRIP?+?twinning induced plasticity (TWIP) effect when the strain rate is increased from 10?3 to 100?s?1. The yield strength of steel increases gradually with strain rate increased, while the tensile strength and elongation first decreases and then increases slowly. The changes in tensile strength and elongation are due to the change of deformation mechanism with the strain rate increased.  相似文献   

16.
Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in‐plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic–plastic straining is reported that utilizes GPa‐level laser shocking at a high strain rate (dε/dt) ≈ 106–107 s?1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High‐resolution imaging and Raman spectroscopy reveal strain‐induced modifications to the atomic and electronic structure in graphene and first‐principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries.  相似文献   

17.
Abstract: The influence of strain rate on the stress–strain behaviour of an AISI 304 austenitic stainless steel sample was investigated. For this purpose, uniaxial tensile tests were performed at room temperature for different strain rates. Microstructural measurements of transformed martensitic phase as a function of plastic strain, and thermal analyses of the specimens were carried out as well. It was found that increasing the strain rate from 10?4 to 10?1 s?1 leads to a 25% improvement in uniform elongation. Moreover, a ‘curve‐crossing’ phenomenon was observed for the hardening behaviour measured at different strain rates. These results were rationalized in terms of martensitic phase transformation suppressed by a temperature increase in the specimens deformed with high strain rates.  相似文献   

18.
Here, an adaptive real‐time 3D single particle tracking method is proposed, which is capable of capturing heterogeneous dynamics. Using a real‐time measurement of a rapidly diffusing particle's positional variance, the 3D precision adaptive real‐time tracking (3D‐PART) microscope adjusts active‐feedback parameters to trade tracking speed for precision on demand. This technique is demonstrated first on immobilized fluorescent nanoparticles, with a greater than twofold increase in the lateral localization precision (≈25 to ≈11 nm at 1 ms sampling) as well as a smaller increase in the axial localization precision (≈ 68 to ≈45 nm). 3D‐PART also shows a marked increase in the precision when tracking freely diffusing particles, with lateral precision increasing from ≈100 to ≈70 nm for particles diffusing at 4 µm2 s?1, although with a sacrifice in the axial precision (≈250 to ≈350 nm). This adaptive microscope is then applied to monitoring the viral first contacts of virus‐like particles to the surface of live cells, allowing direct and continuous measurement of the viral particle at initial contact with the cell surface.  相似文献   

19.
A processing map for extruded AZ31-1Ca-1.5NAl composite has been developed, which exhibited four important domains for hot working. The corresponding temperatures and strain rates associated with these domains are: (1) 250–350°C and 0.0003–0.01 s?1; (1A) 350–410°C and 0.0003–0.01 s?1; (2): 410–490°C and 0.002–0.2 s?1; and (3) 325–410°C and 0.6 s?1 to 10 s?1. Dynamic recrystallization (DRX) occurred in all the four domains although different slip mechanisms and recovery processes are involved. Basal slip and prismatic slip dominates deformation in Domains 1 and 1A, respectively, with recovery occurring by climb that is lattice self-diffusion controlled. However, because of the high strain rates in Domain 3, recovery occurs through a climb process, controlled by grain boundary self-diffusion. The recovery mechanism in Domain 2 is cross-slip assisted by pyramidal slip along with basal and prismatic slip. The grain size has a linear relation with Zener–Hollomon parameter in all the domains. At high strain rates, the composite undergoes shear fracture at lower temperatures and intercrystalline fracture at higher temperatures. All of the identified DRX domains are suitable for conducting bulk metal forming processes although the one with the highest strain rates (Domain 3) is preferred for achieving high productivity.  相似文献   

20.
Low cycle fatigue and ratcheting deformation of 25Cr2MoVA steel under cyclic tension were tested at 550°C. The effects of stress rates for 0·1, 0·5, 2·5, 5, 10, and 40 MPa s?1 on ratcheting effect and fracture appearance were discussed systematically. Results indicate that the steady static creep rate very approaches to the ratcheting strain rates for 0·1 MPa s?1, but it is obviously greater than those of greater stress rates tested. Moreover, the steady ratcheting strain rate reduces rapidly with increasing the frequency when the frequency is less than 36·8 h?1, and then changes slightly for the greater frequency. This implies the steady ratcheting rate of 25Cr2MoVA is approximately rate-independent when the stress rate is greater than 10 MPa s?1. Additionally, there are some microvoids in the central fibrous regions of specimens under static creep and cyclic tension with 0·1, 0·5, and 5 MPa s?1, but very few microvoids for the specimen under cyclic tension with 10 MPa s?1 can be observed. Furthermore, the low cycle fatigue life is relatively short when the stress rate is less than 10 MPa s?1, but it enhances exponentially subsequently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号