首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A polymer air‐drawing model of Polybutylene Terephthalate (PBT) melt‐blown nonwovens has been established. The predicted fiber diameter coincides with the experimental data. The effects of the processing parameters on the fiber diameter have been investigated. A lower polymer flow rate, a higher initial air velocity, and a larger die‐to‐collector distance can all produce finer fibers, whereas too high an initial air velocity and too large a die‐to‐collector distance contribute little to the polymer drawing of PBT melt‐blown nonwovens. The results show the great potential of this research for the computer‐assisted design of melt‐blowing technology. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1750–1752, 2005  相似文献   

2.
Melt‐blown webs from ester and ether thermoplastic polyurethanes and polyether‐block‐amide (PEBA) elastomers were produced at different die‐to‐collector distances (DCD) to study the correlation between the polymer type and hardness, melt‐blowing process conditions, and web properties. An experimental set up was built to measure the air temperature and velocity profiles below and across the melt‐blowing die to correlate the fiber formation process and polymer crystallization behavior to process conditions and web properties. It was shown that air temperature and velocity profiles follow similar trends with increasing distance below the melt‐blowing die: both drop rapidly until reaching a plateau region approximately 5–6 cm below the die. Thereafter, they remain relatively constant with further increasing distance. It was found that crystallization onset and peak temperatures of all block copolymers in this study fall within this region of rapid velocity and temperature drop. This suggests that the polymers have already started to crystallize and solidify before reaching the collector, the extent of which depends on the crystallization kinetics of the polymer. The strong influence of the crystallization kinetics on web strength was clearly demonstrated in the PEBA series. In particular, the hardest grade produced the lowest web strength mainly because of its high crystallization rate and crystallization onset temperature. It is concluded that the melt‐blown web strength is strongly dependent on the degree of fiber‐to‐fiber adhesion within the web, which is determined by the amount of fiber solidification that occurs prior to the collector. The crystallization kinetics of the polymer and the distances traveled between the die and collector or the exposure time of the polymer melt to process and ambient air were shown to be critical in the amount of fiber solidification attained. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

3.
In this work, the physical model of a polymer in a melt blowing process is established and solved by introducing the numerical computation results of the air jet flow field of the dual slot sharp inset die. The influence of the melt blowing processing parameters and the die design parameters on the fiber diameter is also studied. A lower polymer throughput rate, higher polymer melt initial temperature, higher air initial temperature, higher air initial velocity, smaller angle between slot and axis of the spinneret, smaller width of the die head, and larger width of the slot can all produce finer fibers. At the same time, the air jet flow field model of the dual slot sharp inset die of polypropylene polymer nonwovens fabrics in melt blowing process was also established. The air jet flow field model was solved by using the finite difference method. The computational simulation results of the distributions of the z‐components of air temperature and air velocity along the spinline during melt blowing process are in accordance with the experimental data. The air drawing model of melt blowing process was simulated by means of the numerical simulation results of the air jet flow field. The predicted fiber diameter agree with the experimental data. The effects of the air initial velocity and air initial temperature on the fiber diameter were studied and discussed. The results demonstrate that a higher air initial velocity and a higher air initial temperature are beneficial to the air drawing of the polymer melt and thus to reduced fiber diameter. The results show the great potential of this research for computer assisted design in melt blowing nonwoven process and technology. POLYM. ENG. SCI., 57:417–423, 2017. © 2016 Society of Plastics Engineers  相似文献   

4.
Melt blowing is used commercially as a one‐step process for converting polymer resin directly into a nonwoven mat of microfibers. The inset die is often used to produce polymeric fibers in the melt blowing process. The air jet flow field model for the dual slot inset die is established. The flow field model is solved by using the finite difference method. The numerical computation results of the air velocity distribution coincide with the experimental data. Then the air drawing model of polymers in the melt blowing process established in our previous research is solved with the aid of simulation results of the air jet flow field. The final fiber diameter of the nonwoven fabrics predicted by the air drawing model of polymers tallies with the experimental data. The results show the great potential of this research for the computer assisted design of melt blowing technology and equipment. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Melt blowing involves applying a jet of hot air to an extruding polymer melt and drawing the polymer stream into microfibers. This study deals with the dynamic modeling of the instabilities and related processes during melt blowing. A bead‐viscoelastic element model for fiber formation simulation in the melt blowing process was proposed. Mixed Euler‐Lagrange approach was adopted to derive the governing equations for modeling the fiber motion as it is being formed below a melt‐blowing die. The three‐dimensional paths of the fiber whipping in the melt blowing process were calculated. Predicted parameters include fiber diameter, fiber temperature, fiber stress, fiber velocity, and the amplitude of fiber whipping. The mathematical model provides a clear understanding on the mechanism of the formation of microfibers during melt blowing. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Using a low‐melting‐point polymer, copolyamide, as raw material, adhesive meltblown webs were formed on the ordinary melt‐blowing line by using the accessory air and the accessory air chamber. The webs thus produced exhibit narrower fiber diameter distribution and a more uniform pore structure. At the same time, four main melt‐blowing parameters, the primary air pressure, the accessory air pressure, the melt throughput rate, and the die‐to‐collector distance, are discussed in terms of their influence on geometric mean diameter of fibers and fiber diameter distribution. POLYM. ENG. SCI., 46:1–7, 2006. © 2005 Society of Plastics Engineers  相似文献   

7.
In this study, a new melt‐blowing die was studied with the computational fluid dynamic approach. A bead‐viscoelastic element fiber model was established to model three‐dimensional paths of the fiber motion with the standard linear solid (SLS) constitutive equation in different airflow fields. The effects of this newly designed die on the velocity field, temperature field, and turbulence fluctuation field at the centerline were studied and compared with the traditional melt blowing die. The fiber motion was simulated and compared with the airflow field of different dies. The simulations results demonstrated that the new die was able to reduce the velocity fluctuations of the air flow near the outlet of the polymer capillary and generate the higher centerline air velocity and temperature. The fiber attenuation and motion were related to the centerline air velocity, temperature, and turbulent fluctuation in the melt blowing process. POLYM. ENG. SCI., 59:1182–1189 2019. © 2019 Society of Plastics Engineers  相似文献   

8.
熔喷工艺参数和喷嘴设计参数对纤维直径的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
陈廷  黄秀宝 《化工学报》2003,54(9):1334-1337
引 言熔喷法是 2 0世纪 5 0年代发展起来的一种制备超细纤维非织造布的方法 ,其纤维直径仅 1~10 μm.熔喷非织造布是高效精细过滤材料 ,过滤效率可达 99 9%以上 ,广泛用于医疗和环保等领域 .熔喷是依靠高速高温气流喷吹聚合物熔体使其迅速拉伸而形成超细纤维的 .数学模型对于  相似文献   

9.
The influence of the main processing parameters, including the primary air pressure, the accessory air pressure, the melt throughput rate, and the die‐to‐collector distance, on the uniformity of adhesive meltblown web produced on the pilot‐scale melt‐blowing equipment with the added accessory device is investigated using weight measurement and thickness measurement. The effects of the process parameters on the web weight unevenness and the web thickness unevenness are similar, so both the weight unevenness and the thickness unevenness can be used to analyze the web unevenness. The results show that the web unevenness increases with the increasing melt throughput rate and the accessory air pressure; the web unevenness decreases firstly and increases later with the increasing primary air pressure and the die‐to‐collector distance. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

10.
A method to obtain the tenacity and Young's modulus of nonwoven webs without direct measurement of web thickness is proposed. This has been tested with several series of samples with different basis weight. It was found that these properties were nearly Independent of the sample gage length, and both tenacity and modulus generally decreased with increase in the die temperature, the air pressure at the die, or the die to collector distance [DCD]. The web stiffness as measured by bending rigidity followed similar trends. The elongation Lo break also decreased as die temperature and air pressure at The die increased, but it increased with increasing DCD. The average filament diameter in the web decreased with increasing die temperature or air pressure at the die. The single filament strength was measured and compared with strength properties of web and of high-speed melt spun filament prepared from the same resins. The strength of single filaments in the web lie in between those of the web and high-speed spun filaments. The mechanical properties of melt blown web were interpreted in terms of the changes in Fiber diameter, the level of interfilament bonding, the molecular orientation developed in the filament, the diameter uniformity along the individual filaments in the web, and the presence of voids in the filament.  相似文献   

11.
An air‐drawing model of polypropylene (PP) polymer and an air jet flow field model in wide‐slot positive‐pressure spunbonding process are established. The influences of the density and the specific heat capacity of polymer melt at constant pressure changing with polymer temperature on the fiber diameter have been studied. The predicted fiber diameter agrees with the experimental data as well. The effects of the processing parameters on the fiber diameter have been investigated. The air jet flow field model is solved by means of the finite difference method. The numerical simulation computation results of distribution of the fiber diameter match quite well with the experimental data. The air‐drawing model of polymers is solved with the help of the distributions of the air velocity. It can be concluded that the higher air velocity and air temperature can yield the finer fibers diameter. The higher inlet pressure, longer drawing segment length, smaller air knife edge, longer exit length, smaller slot width, and smaller jet angle can all cause higher air velocity and air pressure along z‐axis position, which are beneficial to the air drawing of the polymer melt and thus to reduce the fiber diameter. The experimental results show that the agreement between the predicted results and the experimental measured data is very better, which verifies the reliability of these models. Also, they reveal great prospects for this work in the field of computer‐assisted design (CAD) of spunbonding process. POLYM. ENG. SCI., 58:1371–1380, 2018. © 2017 Society of Plastics Engineers  相似文献   

12.
An on-line study of structure development during poly(butylene terephthalate) melt spinning was carried out. Two polymers with different molecular weights (intrinsic viscosities of 0.75 and 1.0 dL/g) were used. The range of take-up velocities studied was 1500 to 4500 m/min. On-line measurements included diameter, temperature, birefringence, and tension. The phenomenon of diameter thinning (necking) was observed for both polymers at take-up velocities of 3500 and 4500 m/min with a mass throughput of 4 g/min. At a constant mass throughput, the distance from the spinneret at which the necking occurred varied with take-up velocity and molecular weight of the polymer. Increasing the take-up velocity at constant mass throughput caused an increase in cooling rate and a slight increase in the rate at which the temperature decreased with distance from teh spinneret. A small but detectable change in the rate of temperature decrease was observed at a position near or just beyond the formation of the neck. It is suggested that this effect is due to the increased heat transfer caused by the rapid increase in filament velocity and increased surface to volume ration in the neck. Increased take-up velocity also caused necking to occur at higher temperature, as did an increase of polymer molecular weight. Birefringence increased with distance from the spinneret and indicated substantial molecular orientation was developed in the filament prior to the necking zone. A sharp increase of birefringence in the necking zone was observed for take-up velocities of 3500 and 4500 m/min. A discussion of the mechanism of neck formation is presented, and it was concluded that necking is intimately associated with stress-induced crystallization in PBT. An increase of spinline stress resulting from either an increase of take-up velocity or an increase of molecular weight can cause stress-induced crystallization and, hence, necking to occur nearer the spinneret and at higher temperature. For a given polymer this leads to filaments with higher levels of crystallinity, crystalline orientation, and crystalline perfection (greater crystal size). These changes in morphology result in changes in the filament mechanical properties. The effect of molecular weight change on the structure and properties is complicated by the fact that the development of crystallinity seems to be affected by the molecular weight independent of the spinline stress.  相似文献   

13.
A mathematical model of air drawing of a polyethylene terephthalate (PET) polymer in a spunbonding nonwoven process was established and solved by introducing the numerical computational results of the air jet flow field of the attenuator. The predicted fiber diameters, crystallinities, and birefringences agreed well with the experimental data. The air jet flow field model was solved and simulated by means of the finite difference method. The numerical simulation computation results of distributions of the air velocity matched quite well with the experimental data. The air drawing model of the polymer was solved with the help of the distributions of the air velocity measured by a particle image velocimetry. The effects of the processing parameters on the fiber diameters, measured with the aid of an image analysis method, are further discussed. A lower polymer throughput rate, higher polymer melt initial temperature, higher air initial temperature, higher air initial speed, lower venturi gap, higher air suction speed, and higher quench pressure can all produce finer filament fibers. The results demonstrated the great prospects for this research in the field of computer‐assisted design (CAD) in the spunbonding technology field. POLYM. ENG. SCI., 58:1213–1223, 2018. © 2017 Society of Plastics Engineers  相似文献   

14.
Based on the experimental data of spine line temperature and percent crystallization, a time‐integral constitutive equation has been used together with the degree of phase transformation theory to predict the velocity and elongational viscosity profiles. For the velocity profile, our predicted results are compared to experimental data and good agreement is found. Under a drawing force, the elongational viscosity profile shows a stress softening due to the molecular alignment; then the fiber hardens close to the take‐up point, owing to filament crystallization.  相似文献   

15.
Empirical formulas, which describe the air velocity and air temperature decays along the spinline of a dual slot die, are improved by introducing the influence of the ratio of die end width to air slot width. The thus‐improved empirical formulas include more die geometry parameters and are more accurate than the existing ones. The fiber diameters of nonwoven web are predicted by incorporating these new empirical formulas into a one‐dimensional theoretical model for melt‐blowing process. The agreement between the predicted results and the experimental data cited from literature is very good, which confirms the reliability and the accuracy of these new formulas. POLYM. ENG. SCI., 45:1092–1097, 2005. © 2005 Society of Plastics Engineers  相似文献   

16.
A mathematical model to describe the thermal channel spinning (TCS) process in PET high‐speed melt‐spinning has been developed. This model, which is based on the spinning process kinematics, includes the effects of acceleration, gravity, and surfacial air friction. It incorporates the constitutive equation of PET polymer, the heat transfer related to the transverse air blowing and, in particular, to a convection and radiation combining procedure in the thermal channel, while taking into account the nonisothermal crystallization kinetics related to temperature and molecular orientation as well as the elongational viscosity of PET polymer connected with temperature, intrinsic viscosity and crystallinity. The developments of crystallinity, molecular orientation and morphological features of high‐speed‐spun PET fiber in the TCS process are investigated at take‐up speeds ranging from 3 600–4 400 m/min and thermal channel temperatures ranging from 160–200°C. The simulated results of this model are compared with the measured crystallinity, diameter, and birefringence of the spun yarn. The “necking point” in the TCS spinline can be predicted by this model.  相似文献   

17.
The air drawing model of polymer in spunbonding is established. The air drawing model of polypropylene polymer in spunbonding is confirmed by the experimental results obtained with the help of our university's equipment. The predicted filament fiber diameter is in accordance with the experimental data. The effects of the process parameters on the filament fiber are investigated in this article. It is found that a lower polymer throughput rate, a higher polymer melt temperature, a higher primary air temperature, a higher air suction speed, a higher quench pressure, a higher venturi gap can all yield finer fiber, whereas the effect of the web basis weight is not significant. The results show great prospects for this research in the field of computer assisted design of spunbonding technology. POLYM. ENG. SCI., 47:510–515, 2007. © 2007 Society of Plastics Engineers.  相似文献   

18.
Solution (air‐) blowing, an innovative technique for generation of ultrafine polymer fibers from solutions, was developed by feeding polymer solutions (instead of melts) to a die assembly similar to that used in the conventional melt (air‐) blowing process. Micro‐ to nano‐scaled polyvinylpyrrolidone (PVP) fibers were produced using PVP solutions with water, ethanol, and/or their mixtures as the solvents; and the morphologies of the fibers were examined by scanning electron microscopy. The processing variables, including PVP concentration, air‐blowing pressure, solution‐feeding pressure, and the volatility of the solvent system (the ratio of ethanol to water), were systematically investigated. The results indicated that solution (air‐) blowing was a viable technique to produce nonwoven fabrics consisting of ultrafine polymer fibers with diameters ranging from micrometers to nanometers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
In this article, as a nonlinear mathematical problem, the air‐drawing model and the air jet flow field model of the polymer during spunbonding process are also presented, because the continuous filament fiber not always occurs in the spunbonding process, therefore, there exists the filament fiber breakage, the broken fibers occur in the flow field of spunbonding process is a two‐phase flow problem, we suggested a new model called the sphere–spring model that can best described the broken fibers movement features. At the same time, the air‐drawing model of the polypropylene polymer in a spunbonding process is presented and solved by introducing the numerical computation results of the air jet flow field of aerodynamic device. The model's predictions of the filament fiber diameters, crystallinities, and birefringences are coincided well with the experimental data. The effects of the processing parameters on the filament fiber diameter are discussed. A lower polymer throughput rate, lower quench air temperature, higher polymer melt initial temperature, higher air initial temperature, higher air initial speed, medium smaller venturi gap, higher air suction speed, higher quench air pressure, higher air suction speed, higher extrusion temperature, higher quench air pressure, higher cooling air temperature, and so on can all produce finer filament fiber. The results show great prospects for this research in the field of computer‐assisted design of spunbonding technology. POLYM. ENG. SCI., 54:481–492, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
The air drawing model of polymer polypropylene (PP) spunbonding nonwovens has been established. The influences of the density and the specific heat capacity of polymer melt at constant pressure changing with polymer temperature on the fiber diameter have been studied. The air drawing model of polymer in spunbonding is confirmed by the experimental results obtained with our university's equipment. The effects of the processing parameters on fibers web evenness of PP spunbonding nonwoven fabrics in wide slot positive pressure drafting assembly of spunbonding process have also been investigated. The predictions of the filament fiber diameters, crystallinities, and birefringences are coincided well with the experimental data. It is found that a medium polymer melt temperature, monomer suction wind speed, drawing pressure, cross air blow speed, and air control distance have a significant influence on the web evenness and quality, which are beneficial to produce more uniformity fibers web. The experimental results show that the agreement between the results and experimental data is very better, which verifies the reliability of these models. At the same time, the results also reveal the great potential of this research for the computer‐assisted design (CAD) of spunbonding technology. POLYM. ENG. SCI., 58:1268–1277, 2018. © 2017 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号