首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
We have developed a self‐assembly method for fabricating well‐ordered two‐dimensional (2D) and three‐dimensional (3D) colloidal crystal films. With a minute amount of a polystyrene colloidal suspension and without any special equipment, the proposed method can be used to rapidly deposit high‐quality colloidal crystal films over a large surface area. By controlling the lift‐up rate of the substrate, we modulate the meniscus thinning rate, which determines whether the colloidal particles are assembled into two or three dimensions. The proposed method can be used to fabricate not only monolayered colloidal crystals with colloidal particles of various sizes, but also multilayered colloidal crystals. In addition, the method enables us to fabricate binary colloidal crystals by consecutively depositing large and small particles.  相似文献   

2.
Photonic crystal (PC) films are prepared by precipitation of colloidal crystal seeds in supersaturated solution of particles, followed by crystal growth and structure fixing with photo‐polymerization. As the liquid monomer becomes a solid matrix, the highly concentrated particles are forced to precipitate into colloidal microcrystals in short time, and ‘polymerization‐induced colloidal assembly’ (PICA) is shown to be the major driving force to form colloidal crystals. PICA is intrinsically different from evaporation‐induced colloidal assembly, because the seed formation and crystal growth are separated into two independent steps, which makes the synthesis more flexible, controllable, and efficient. The PICA process is capable of quickly producing PC films with an ultra‐narrow bandgap, tunable thickness, and large size. Based on these characteristics and the blocking effect of the outer PC layer to the reflection signal of inner layer, a coding–decoding system is developed in which the film's composition and stacking sequence can be identified by its distinctive reflection spectrum.  相似文献   

3.
Evaporation‐induced self‐assembly of colloidal particles is one of the most versatile fabrication routes to obtain large‐area colloidal crystals; however, the formation of uncontrolled “drying cracks” due to gradual solvent evaporation represents a significant challenge of this process. While several methods are reported to minimize crack formation during evaporation‐induced colloidal assembly, here an approach is reported to take advantage of the crack formation as a patterning tool to fabricate microscopic photonic structures with controlled sizes and geometries. This is achieved through a mechanistic understanding of the fracture behavior of three different types of opal structures, namely, direct opals (colloidal crystals with no matrix material), compound opals (colloidal crystals with matrix material), and inverse opals (matrix material templated by a sacrificial colloidal crystal). This work explains why, while direct and inverse opals tend to fracture along the expected {111} planes, the compound opals exhibit a different cracking behavior along the nonclose‐packed {110} planes, which is facilitated by the formation of cleavage‐like fracture surfaces. The discovered principles are utilized to fabricate photonic microbricks by programming the crack initiation at specific locations and by guiding propagation along predefined orientations during the self‐assembly process, resulting in photonic microbricks with controlled sizes and geometries.  相似文献   

4.
In this paper a convenient and universal strategy for preparing nanoring arrays of different compositions based on a colloidal‐crystal‐template strategy is reported. Large‐area arrays of polystyrene, magnetite, Au, Si, magnetite nanoparticle/polystyrene and Au/polystyrene double‐layer composite nanorings are prepared. Many kinds of nanoring structures, including Fe3O4 nanoparticle/polystyrene and Au/polystyrene double‐layer nanorings, can be released from the substrates, resulting in free‐standing composite nanorings, which might be used as self‐assembly building blocks and ultrasensitive bio‐ and chemical sensors.  相似文献   

5.
Hexagonally arrayed structures of colloidal crystals with uniform surface are a good candidate for master molds to be used in soft lithography. Here, the fabrication of periodically arrayed nanostructures using poly(dimethylsiloxane) (PDMS) molds based on three‐dimensionally (3D) ordered colloidal crystals is reported. A robust, high‐quality 3D colloidal‐crystal master molds is prepared using the colloidal suspension containing a water‐soluble polymer. The surface patterns of the 3D colloidal crystals can then be transferred onto a polymer film via soft lithography, by means of the replication of the surface pattern with PDMS. Various hexagonally arrayed nanostructure patterns can be fabricated, including close‐packed and non‐close‐packed 2D arrays and honeycomb structures by the structural modification of the 3D colloidal‐crystal templates. The replicated hexagonally arrayed structures can also be used as templates for producing colloidal crystals with 2D superlattices.  相似文献   

6.
Efficient and large scale printing of photonic crystal patterns with multicolor, multigrayscale, and fine resolution is highly desired due to its application in smart prints, sensors, and photonic devices. Here, an electric‐field‐assisted multicolor printing is reported based on electrically responsive and photocurable colloidal photonic crystal, which is prepared by supersaturation‐induced self‐assembly of SiO2 particles in the mixture of propylene carbonate (PC) and trimethylolpropane ethoxylate triacrylate (ETPTA). This colloidal crystal suspension, named as E‐ink, has tunable structural color, controllable grayscale, and instantly fixable characteristics at the same time because the SiO2/ETPTA‐PC photonic crystal has metastable and reversible assembly as well as polymerizable features. Lithographical printing with photomask and maskless pixel printing techniques are developed respectively to efficiently prepare multicolor and high‐resolution photonic patterns using a single‐component E‐ink.  相似文献   

7.
In this work, we report a versatile approach to two‐dimensional colloidal patterning based on the lateral assembly of colloidal particles by an alternating electric field (AEF). Under the AEF, the lithographically templated electrodes provide an effective way to reversibly and rapidly assemble colloidal particles into some desirable patterns. By controlling the AEF and the electrode pattern geometry, various colloidal patterns with tunable lattice spacing and even with binary lattice spacing have been formed. Particularly, we demonstrate that well‐defined linear defects can be embedded inside the colloidal crystals, whereas the unwanted existing defects can be controllably relaxed by this patterning process. This novel patterning technique is amenable to both large scale on‐chip patterning and micro‐structural control with single‐particle resolution on a time scale of seconds. Furthermore, it introduces a new class of colloidal structures with the properties that can be finely tuned, reversibly switched, or permanently fixed, opening a new way for the engineering of novel materials and devices at micro levels.  相似文献   

8.
A scalable method for site‐selective, directed self‐assembly of colloidal opals on topologically patterned substrates is presented. Here, such substrate contains optical waveguides which couple to the colloidal crystal. The site‐selectivity is achieved by a capillary network, whereas the self‐assembly process is based on controlled solvent evaporation. In the deposition process, a suspension of colloidal microspheres is dispensed on the substrate and driven into the desired crystallization sites by capillary flow. The method has been applied to realize colloidal crystals from monodisperse dielectric spheres with diameters ranging from 290 to 890 nm. The method can be implemented in an industrial wafer‐scale process.  相似文献   

9.
A fast and highly controllable method of fabricating large films of photonic crystals of colloids is reported. A charge‐stabilized colloidal suspension was run in a flat capillary driven by a pressure‐regulated air pulse. The colloidal crystal texture formed in the capillary was a sensitive function of air pressure. Above a critical pressure, the entire capillary was filled with a uniform single‐domain texture whose transmittance spectrum showed a high quality as a photonic crystal, i.e., excellent opacity at a photonic bandgap and high transparency at other wavelengths. The present method is easily applicable to industrial processes for mass production.  相似文献   

10.
Crack‐free three‐dimensional (3D) colloidal silica crystals are fabricated on an elastomeric polydimethylsiloxane (PDMS) stamp via the lift‐up method. A surface relief structure is fabricated on the PDMS substrate to enable the formation of colloidal crystal assemblies that cannot be achieved on a plane PDMS substrate owing to the hydrophobic nature of its surface. Four samples of uniform silica particles having different sizes are prepared for colloidal crystal assembly on PDMS substrates with various relief patterns. This strategy not only provides a means for the assembly of crack‐free colloidal crystals on a soft hydrophobic surface via the lift‐up method but enables the transfer of the crack‐free colloidal crystals onto a curved surface.  相似文献   

11.
Colloidal monolayers with high order and increased complexity beyond plain hexagonal packing geometries are useful for 2D templating of surface nanostructures and lithographic applications. Here, binary colloidal monolayers featuring a close‐packed monolayer of large spheres (L) with a superlattice of small particles (S) are prepared in a single step using a Langmuir trough. Adjustment of the stoichiometry of the two particle types at the air–water interface leads to a high degree of control over the occupation of the interstitial sites in the close‐packed layer of large spheres by the small colloids. Thus, large areas of binary 2D crystals with LS2, LS6, and LS9 structures are fabricated in a controlled way. The process allows the formation of binary crystals over a wide range of particle size ratios from 0.19 to 0.40. The pH value of the subphase can be used to enhance the crystallization process by changing the contact angle of the particles at the interface. An interfacial polymerization of butyl cyanoacrylate is used to directly image the contact angle of the colloids at the interface. Transfer to solid substrates is achieved by a surface lowering technique. A variety of substrates with arbitrary topographies can thus be decorated with colloidal monolayers. Applied to a lithographic process, such monolayer architectures allow the generation of complex patterns, not accessible with conventional close‐packed monolayers.  相似文献   

12.
Hopper shape is a special type of crystal morphology. Hopper‐shaped crystals possess unique properties and show promise in many different applications. The understanding of how the building blocks (atoms, ions, and molecules) assemble into hopper‐shaped crystals and how the environmental factors influence the assembly process is critical to the properties and applications of hopper‐shaped crystals. In this review, the important interfacial instability theories that outline the underlying mechanisms for the formation of hopper‐shaped crystals are discussed. Next, the relevant experimental developments based on three categories of synthetic approaches are discussed: the growth through the control of the solute concentration, the temperature gradient, and the capping agent. At the end of the review, the applications, opportunities, and potential challenges of the hopper‐shaped crystals are discussed.  相似文献   

13.
Surfaces with micro‐ and nanometer‐scale patterns have many potential applications, particularly in lifescience. This article reports on a versatile, straightforward, and inexpensive approach for the creation of chemical patterns using fabricated binary colloid crystals, consisting of small and large particles, as masks for the deposition of an amino‐functionalised ultrathin film by plasma polymerization. After removal of the binary colloidal mask, the characterization techniques [scanning electron microscopy (SEM) and atomic force microscopy (AFM)] reveal a surface contrast that depicts an ability of the small particles to allow diffusion of the plasma to the substrate. A plasma‐polymer film is created under the small particles and the region of substrate in direct contact with the large particle remains uncoated. Numerous types of patterns and feature heights can be produced with good fidelity over areas of several cm2 by appropriate tuning of the binary colloid crystal mask morphology and the plasma‐polymer deposition time. Finally, the amine groups of the patterned surface are used for covalent grafting poly(ethylene glycol) propionaldehyde (PEG‐PALD) by reductive amination under conditions of reduced solubility to produce a patterned surface for directed adsorption of protein. AFM investigations show that the proteins are preferentially attached to the nanometer‐scale regions of the pattern without PEG‐PALD.  相似文献   

14.
We report a method for producing colloidal crystals heavily loaded with PbS quantum dots (QDs). The approach employed uses capillary forces to load the QDs in the interstitial voids of the colloid crystals and yields highly ordered structures with a high loading of QDs. The infiltration process is qualitatively monitored using confocal fluorescence microscopy and scanning electron microscopy. The optical properties of the resulting composite structure are examined using optical spectroscopy. The shift in the stopband resulting from the infiltration of the colloid crystal shows that the PbS QDs occupy nearly 100 % of the volume of the interstitial space.  相似文献   

15.
Like atoms and molecules with directional interactions, anisotropic particles could potentially assemble into a much wider range of crystalline arrays and meso‐structures than spherical particles with isotropic interactions. In this paper, the electric‐field directed assembly of geometrically anisotropic particles–colloidal dimers is studied. Rich phase behavior and different assembly regimes are found, primarily arising from the broken radial symmetry in particles. The orientations of individual dimers depend on the frequency of the electric field, the ramping direction of frequency, and the salt concentration. The competition and balance between the hydrodynamic, electric, and Brownian torques determine the orientation of individual particles, while the competition between the electrohydrodynamic force and dipolar interaction determines the aggregation of aligned particles at a given experimental condition. The field distribution near the electrode is critical to understand the orientation and assembly behavior of colloidal dimers on a conducting substrate. This study also demonstrates the effectiveness, the reversibility, and potential opportunity of applying electric field to control the orientation and direct the assembly of non‐spherical particles. In particular, two dimensional close‐packed crystals of perpendicularly aligned dimers are obtained, which shows promise in fabricating 3D photonic crystals based on dimer‐like colloids and field‐directed display.  相似文献   

16.
The design and preparation of porous materials with controlled structures and functionalities is crucial to a variety of absorption‐ or separation‐relevant applications, including CO2 capture. Here, novel functional polymeric materials with three‐dimensionally ordered macroporous (3DOM) structures are prepared by using colloidal crystals as templates using relatively simple, rapid, and inexpensive approaches. These ordered structures are used for the reversible CO2 capture from ambient air by humidity swing. Typically, the colloidal crystal template is synthesized from polymer latex particles of poly(methyl methacrylate) (PMMA) or polystyrene (PS). To maintain the functionality of the material, it is important to prevent the porous structure collapsing, which can occur by the hydrolysis of the ester bonds in conventional crosslinkers under basic conditions. This hydrolysis can be prevented by using a water‐soluble crosslinker containing two quaternary ammonium moieties, which can be used to prepare stable porous crosslinked polymers with the monomer (vinylbenzyl)trimethylammonium chloride (VBTMACl) and using a PMMA‐based colloidal crystal template. The hydroxide‐containing monomer and dicationic crosslinker are synthesized from their chloride precursors, avoiding the ion‐exchange step which causes shrinkage of the pores. An analysis of different methods for infiltrating the monomer solution into the colloidal crystal template shows that infiltration using capillary forces leads to fewer defects than infiltration under a partial vacuum. In addition, functional macroporous films with micrometer thickness are prepared from a template of PS‐based colloidal crystals in a thin film. In general, the colloidal crystal templated materials showed improved CO2 absorption/desorption rates and swing sizes compared to a commercially available material with similar functional groups. This work could easily be extended to create a new generation of ordered macroporous polymeric materials with tunable functionalities for other applications.  相似文献   

17.
We investigate a new method for forming large‐area (> cm2) ordered monolayers of colloidal nanocrystal quantum dots (QDs). The QD thin films are formed in a single step by spin‐casting a mixed solution of aromatic organic materials and aliphatically capped QDs. The two different materials phase separate during solvent drying, and for a predefined set of conditions the QDs can assemble into hexagonally close‐packed crystalline domains. We demonstrate the robustness and flexibility of this phase‐separation process, as well as how the properties of the resulting films can be controlled in a precise and repeatable manner. Solution concentration, solvent ratio, QD size distribution, and QD aspect ratio affect the morphology of the cast thin‐film structure. Controlling all of these factors allows the creation of colloidal‐crystal domains that are square micrometers in size, containing tens of thousands of individual nanocrystals per grain. Such fabrication of large‐area, engineered layers of nanoscale materials brings the beneficial properties of inorganic QDs into the realm of nanotechnology. For example, this technique has already enabled significant improvements in the performance of QD light‐emitting devices.  相似文献   

18.
Artificial defect engineering in 3D colloidal photonic crystals is of paramount importance in terms of device applications. Over the past few years, we have carried out a great deal of research on introducing artificial defects, including point, line, and planar defects, in 3D colloidal photonic crystals by using “bottom‐up” self‐assembly in combination with “top‐down” micromachining techniques. In this Feature Article, we summarize our research results regarding the engineering of artificial defects in self‐assembled 3D photonic crystals, along with other important research breakthroughs in the literature. The significant advancements in the engineering of defects as reviewed here together with the encouraging reports on the fabrication of perfect colloidal crystals without unwanted defects will collectively lead to technological applications of self‐assembled 3D photonic crystals in the near future.  相似文献   

19.
Organic single crystals with much higher carrier mobility and stability compared to the amorphous organic materials have shown great potential in electronic and optoelectronic devices. However, their applications in white organic light‐emitting devices (WOLEDs), especially the three‐color‐strategy WOLEDs, have been hindered by the difficulties in fabricating complicated device structures. Here, double‐doped white‐emission organic single crystals are used as the active layers for the first time in the three‐color‐strategy WOLEDs by co‐doping the red and green dopants into blue host crystals. Precise control of the dopant concentration in the double‐doped crystals results in moderately partial energy transfer from the blue donor to the green and red dopants, and thereafter, simultaneous RGB emissions with balanced emission intensity. The highest color‐rendering index (CRI) and efficiency, to the best of the authors' knowledge, are obtained for the crystal‐based WOLEDs. The CRI of the WOLEDs varies between 80 and 89 with the increase of the driving current, and the luminance and current efficiency reach up to 793 cd m?2 and 0.89 cd A?1, respectively. The demonstration of the present three‐color organic single‐crystal‐based WOLED promotes the development of the single crystals in optoelectronics.  相似文献   

20.
The self‐assembly of polystyrene dimer‐ and spherocylinder‐shaped colloids is achieved via controlled drying on glass and silicon substrates. 3D monoclinic colloidal crystal structures are determined from scanning electron microscopy images of sections prepared using focused ion‐beam (FIB) milling. Full photonic bandgaps between the eighth and ninth bands are found for a systematic range of colloidal dimer shapes explored with respect to the degree of constituent lobe fusion and radius ratio. The pseudogap between bands 2 and 3 for spherocylinder‐based monoclinic crystals is also probed using normal incidence reflection spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号