首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyetheretherketone (PEEK) composites reinforced with short carbon fibers (SCFs) (20 vol%) and nano‐SiO2 (1, 1.5, and 2 wt%) particles were prepared by incorporating nanoparticles into PEEK/SCF composites using the internal mixer. In the development of biomaterial, both mechanical and biological characteristics must be considered. Thus, the effects of nanoparticles on the mechanical and biological properties of the PEEK/SCF composites were studied. To evaluate the mechanical properties of this biomaterial, nanoindentation method and tensile test were used. Results showed that by increasing the weight percentage of nano‐SiO2, the elastic modulus, hardness, and tensile energies were increased. In vitro biological evaluations of the samples were done by performing cytotoxicity (3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐iphenyltetrazolium bromide assay) and cell adhesion assays. Cell–material interaction with the surface of the composite was examined by scanning electron microscopy (SEM). In all of the tests, osteoblast cells were used. Results of biological tests showed that the samples are biocompatible and they have no toxicity. Also, Adhered cells presented a normal morphology by SEM and many of the cells were observed to be undergoing cell division. POLYM. COMPOS., 34:1960–1968, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
The wear and friction properties of poly (ether‐ether‐ketone) (PEEK) reinforced with 0–33 vol % (60 wt %) micron size Al2O3 composites were evaluated at a sliding speed of 1.0 m/s and nominal pressure from 0.5 to 1.25 MPa under dry sliding conditions using a pin‐on‐disk wear tester. The wear resistance of the pure PEEK is 10‐fold higher than that of mild steel under the similar test condition. It is improved to 18‐fold as compared with mild steel at 3.5 vol % Al2O3 content. The improvement in wear properties may be attributed to the thin, tenacious, and coherent transfer film formed between the steel countersurface and composite pin. However, the wear resistance of PEEK containing above 3.5 vol % Al2O3 was deteriorated, despite their higher hardness and stiffness as compared with that of composites containing lower Al2O3 content. This is attributed to the formation of thick and noncoherent transfer film, which does not prevent the wear of the composites from hard asperities of countersurface. Moreover, hard Al2O3 particles present in transfer film act as third body wear mechanism. The coefficient of friction of the composites is higher than that of pure PEEK. SEM and optical microscopy have shown that wear of pure PEEK occurs by the mechanism of adhesion mainly whereas of PEEK composites by microploughing and abrasion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The wollastonite was grafted with different silane coupling agents, which could improve interface adhesion. Wollastonite and modified wollastonite‐reinforced poly(ether ether ketone) (PEEK) composites were prepared by melt blending. The mechanical properties, rheology behavior, and thermal properties of the composites were investigated. The modified wollastonite‐reinforced PEEK composites exhibited better mechanical properties than the unmodified wollastonite‐reinforced PEEK composites based on good interfacial adhesion. The composites had lower activation volume and complex shear viscosity. Furthermore, the modified wollastonite‐reinforced PEEK composites had higher crystallization peak temperature (Tc) and crystalline fraction (χc) compared with the unmodified wollastonite‐reinforced PEEK composites. This study shows that the traditional silane coupling agents could effectively improve the performance of PEEK composites. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
The friction and wear properties of poly (ether ether ketone) (PEEK) composites filled with potassium titanate whiskers (PTWs) under alkali, water, and dry conditions were investigated. The wear mechanisms in different lubrication situations were studied on the basis of examinations of the worn and counterpart surfaces with scanning electron microscopy and optical microscopy. The results showed that PTWs could obviously increase the wear resistance and reduce the friction coefficient of the PEEK composites under dry sliding conditions. Only when the PTW content was greater than 35 wt % did the wear resistance and friction coefficient deteriorate. Sliding in water caused increases in the wear rate and friction coefficient of the PEEK composites, and the PTW‐filled PEEK composites showed the highest friction coefficient and wear rate under this lubrication condition. On the contrary, sliding in an alkaline solution, the PTW‐filled PEEK composites showed the lowest friction coefficient and almost the same level of wear resistance as that found under the dry condition. Furrows and abrasive wear were the main mechanisms for the PTW‐filled PEEK composites sliding in water. The transfer onto the counterpart rings was significantly hindered with sliding under water and alkali conditions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The composites of poly(ether ether ketone) (PEEK) filled with micrometer‐sized Cu and Fe particles were prepared by compression molding. The friction and wear behaviors of the composites were examined on a pin‐on‐disc friction‐and‐wear tester by sliding PEEK‐based composites against tool steel at a sliding speed of 1.0 m s−1 and a normal load of 19.6N. Optical microscopic analysis of the transfer film and of the worn pin surfaces and wear debris was performed to investigate the wear mechanisms of the composites. It was found that Cu and Fe used as filler considerably decreased the wear rate of PEEK. A thin, uniform, and tenacious transfer film was formed when Cu was used as the filler, and a nonuniform and thick transfer film was formed when Fe was used as the filler. The transfer film played a key role in increasing the wear resistance of the PEEK composites. Plastic deformation was dominant for wear of PEEK–Cu, while abrasion and adhesion were dominant for wear of PEEK–Fe. Because of the strong affinity between Fe as filler and its identical counterpart in the counterface tool steel surface, the adhesion between the PEEK–Fe composite surface and the counterface tool steel surface was thus severe. This contributed to the generation of a thicker transfer film for PEEK–Fe. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 179–184, 2000  相似文献   

6.
A series of copolymers containing conjugated fluorene groups as a compatibilizer to improve the dispersion of multi‐walled carbon nanotubes (MWCNTs) were prepared and used to improve the wear resistance of poly(ether ether ketone)/graphite (PEEK/GP) composites. The solubility of MWCNTs had a maximum at a concentration ratio of 2:1 polymer:MWCNTs. Transmission electron microscopy indicated that polymer ? MWCNT interactions were capable of partially debundling the nanotubes in chloroform, with individual nanotubes or small bundles clearly observed. The tribological properties of PEEK composites incorporating the modified MWCNTs were investigated using a pin‐on‐disc apparatus and a block‐on‐ring apparatus. The PEEK composites had a lower frictional coefficient under the block‐on‐ring testing condition, but a lower wear rate was achieved in the pin‐on‐disc test. © 2017 Society of Chemical Industry  相似文献   

7.
The tribological properties of poly(ether–ether–ketone) (PEEK)/aluminum nitride (AlN) composites reinforced with micro‐ and nano‐AlN particles were evaluated under dry sliding conditions. The wear resistance of pure PEEK is 10‐fold higher than mild steel. It was further improved by 2‐fold at 20 wt % micro‐AlN and by more than 4‐fold at 30 wt % nano‐AlN composite compared with pure PEEK. The improvement in wear resistance was attributed to a thin and coherent transfer film. However, it was deteriorated on further increasing micro‐AlN. The coefficient of friction of the composites was increased. Scanning electron microscopy and optical microscopy of worn surfaces and transfer films have been explained in detail. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Three‐dimensional (3D) braided carbon fiber reinforced polyetheretherketone (denoted as CF3D/PEEK) composites with various fiber volume fractions were prepared via hybrid woven plus vacuum heat‐pressing technology and their tribological behaviors against steel counterpart with different normal loads at dry sliding were investigated. Contrast tribological tests with different lubricants (deionized water and sea water) and counterparts made from different materials (epoxy resin, PEEK) were also conducted. The results showed that the incorporation of 3D braided carbon fiber can greatly improve the tribological properties of PEEK over a certain range of carbon fiber volume fraction (Vf) and an optimum fiber loading of ∼54% exists. The friction coefficient of the CF3D/PEEK composites decreased from 0.195 to 0.173, while the specific wear rate increased from 1.48 × 10−7 to 1.78 × 10−7 mm3 Nm−1 with the normal load increasing from 50 to 150 N. Abrasive mechanism was dominated when the composites sliding with GCr15 steel counterpart under dry and aqueous lubrication conditions. Deionized water and sea water lubricants both significantly reduced the wear of the CF3D/PEEK composites. When sliding with neat PEEK counterpart, the CF3D/PEEK composites possess lower friction coefficient than those against epoxy resin and GCr15 steel counterparts. In general, CF3D/PEEK composites possess excellent tribological properties and comprehensive mechanical performance, which makes it become a potential candidate for special heat‐resisting tribological components. POLYM. COMPOS., 36:2174–2183, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
Silane-terminated poly(ether ether ketone) oligomers were synthesized and grafted onto wollastonite (W) particles. The prepared grafted-wollastonite particles (g-W) were then incorporated into PEEK matrix via melt processing. Properties of the PEEK composites were investigated using differential scanning calorimetry (DSC), universal tester and rheometer. The researchers found the mechanical properties of the PEEK/g-W composites were markedly enhanced, complex viscosity of the PEEK/g-W composites increased, and both the peak crystallization temperature (T c ) and crystalline fraction (χ c ) of the PEEK composites with g-W were significant higher compared with those of the PEEK composites with W. It is our belief that these results are due to the strong interaction between the grafted-wollastonite particles and the PEEK matrix.  相似文献   

10.
Polyoxymethylene (POM) composites modified with nanoparticles, polytetrafluoroethylene (PTFE) and MoS2 were prepared by a twin‐screw extruder. The effect of nanoparticles and solid lubricant PTFE/MoS2 on mechanical and tribological properties of the composites were studied. Tribological tests were conducted on an Amsler friction and wear tester using a block‐on‐ring arrangement under dry sliding and oil lubricated conditions, respectively. The results showed that generally speaking POM nanocomposites had better stiffness and tribological properties than corresponding POM composites attributed to the high surface energy of nanoparticles, except that the tensile strength of three composites and dry‐sliding tribological properties of POM/3%Al2O3 nanocomposite decreased due to the agglomeration of nanoparticles. Tribological properties differed under dry sliding and oil lubricated conditions. The friction coefficient and wear volume of POM nanocomposites under oil lubricated condition decreased significantly. The increased deformation resistance supported the increased wear resistance of POM nanocomposites. POM/PTFE/MoS2/3%Al2O3 nanocomposite had the best mechanical and tribological properties of all three composites, which was attributed to the synergistic effect of nanoparticles and PTFE/MoS2. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

11.
In this study, a series of T300 carbon fiber‐reinforced polyimide (CFRPI) composites were prepared by laminating premolding polyimide (PI) films with unidirectional carbon fiber (CF) layers. On the basis of PI systems design, the effect of CF volume fraction, processing conditions, and PI molecular structure on the properties of CFRPI composites was studied in detail. In addition, two kinds of nano‐particles, including carbon nano‐tube (CNT) and SiO2 were filled into the premolding PI films with different concentrations. And the effect of nano‐particles on the properties of CFRPI composites was also investigated. The surface characteristic of T300 CF was measured by X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The properties of premolding PI film and CFRPI composites were measured by dynamic mechanical analysis (DMTA), SANS testing machine, scanning electron microscopy (SEM), and so forth. These experimental results showed that the properties of CFRPI composites were mainly affected by the premolding PI film and molding condition. The change of CF volume fraction from 55% to 65% took little effect on the mechanical properties of CFRPI composites. In addition, the incorporation of nano‐particle SiO2 could further improve the properties of CFRPI composites, but CNT hardly improved the properties of CFRPI composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 646–654, 2006  相似文献   

12.
Abstract

Novel poly(ether ether ketone) (PEEK)/organically modified montmorillonite (OMMT) composites containing 0–10 wt-% fractions of OMMT were prepared by melting blending method and the microstructure, thermal and mechanical properties were investigated using different characterisation techniques. X-ray diffraction and transmission electron microscopy showed that the OMMT was well dispersed with microscale in the PEEK matrix. Differential scanning calorimetry indicated that the glass transition temperature T g and melt temperature T m of PEEK/OMMT composites (POMCs) were hardly affected by the addition of OMMT, while the crystal temperature T c decreased when the amount of OMMT excessed 1 wt-%. The data of thermogravimetric analysis exhibited that the thermal stability of POMCs in higher temperature region was better than that of pure PEEK. The results of mechanical properties test revealed that modulus and strength of POMCs increased with the content of OMMT, whereas the elongation at break and impact strength of POMCs decreased.  相似文献   

13.
Antiwear composites with extraordinary tribological performances and good mechanical/thermal properties were developed by the dispersion of poly(ether sulfone) (PES) wrapped graphite nanosheets (GNSs) inside a poly(ether ether ketone) (PEEK) matrix via melt blending. The tribological behaviors and the mechanical/thermal properties of the composites were carefully investigated. Compared with pure PEEK and PEEK/GNS composites, the PEEK/wrapped GNS composites exhibited considerable enhancements in those performances; these were attributed to the eliminated layer of PES; this elimination not only eliminated the GNS aggregation inside the PEEK matrix for homogeneous distribution inside the PEEK matrix but also enhanced the interfacial adhesion between the PEEK and wrapped GNSs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41728.  相似文献   

14.
A silicon oxide (SiO2) nanoparticles-decorated short carbon fiber (SCF) hybrid (SCF-SiO2) was designed to improve the weak interfacial bonding between fibers and matrix. Nano-SiO2 was grafted onto carbon fibers by introducing amino group and epoxy group on the surface of carbon fibers and SiO2, respectively. The chemical composition of SCF-SiO2 was analyzed by Fourier transform infrared spectrometer and energy-dispersive spectrometry, the microstructure of SCF-SiO2 were investigated by scanning electron microscope, and then the hybrid filler was introduced into Poly(ether ether ketone) (PEEK). Due to the strong interfacial interaction between filler and matrix, the mechanical and tribological properties of SCF-SiO2/PEEK composites were significantly better than SCF/PEEK composites. In order to further improve the tribological properties of the composites, micrometer-sized cenosphere (CS) particles were introduced into the aforementioned system to prepare multicomponent composites. The test results of friction and wear indicate that the CS/SCF-SiO2/PEEK composites have the optimal tribological properties. Compared with pure PEEK, the friction coefficient of CS/SCF-SiO2/PEEK composites under 200 N load decreases by 56.4% and the specific wear rate decreases by 87.4%. Meanwhile, the thermal decomposition temperature of CS/SCF-SiO2/PEEK composites is increased by 40 °C compared to pure PEEK. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48749.  相似文献   

15.
Modification of nanoparticles through graft polymerization is able to change the chemical nature of the particles' surfaces and provides an effective means for the preparation of nano‐fillers specified for composites manufacturing. The present work focuses on the mechanical role of grafted nano‐SiO2 particles in high density polyethylene composites prepared by melt compounding. The experimental results show that at a content of 0.75 vol%, the modified nano‐silica results in a rise in tensile stiffness, tensile strength and impact strength of the composites. The grafted nanoparticles can improve the mechanical performance of the matrix polymer more effectively than the untreated version. In addition, a further enhancement of the composites stiffness and strength can be achieved by crosslinking the concentrated masterbatches, which has not yet been revealed in the authors' previous works on grafted nano‐SiO2 particles/polypropylene composites. It is thus revealed that the introduction of the grafting polymers onto the nanoparticles increases the tailorability of the composites.  相似文献   

16.
研究了超细氧化钛纤维对PEEK摩擦磨损、耐热和结晶性能的影响,并与nano-TiO2粒子增强PEEK作对比,探讨了相关作用机理。结果表明:与nano- TiO2微粒相比,超细TiO2纤维具有更强的显微补强、显微耐磨作用,填充超细TiO2纤维的PEEK表现出更好的减摩耐磨特性和耐热性能。无论在较低载荷还是较高载荷下,超细TiO2纤维/PEEK复合材料的摩擦系数和磨损率均低于nano- TiO2/PEEK复合材料,且其磨损面、对偶面更加平整光滑。载荷200 N时,5%~10%相似文献   

17.
Gd2O3/PEEK (poly ether ether ketone) composites were prepared on a twin‐screw extruder by the incorporation of Gd2O3 as a shield against X‐ray to PEEK matrix. The influence of Gd2O3 addition and surface treatment of the particles with sulfonated PEEK (SPEEK) on the morphology, thermal and mechanical properties of the composites was investigated by SEM, DSC, TGA and tensile tests respectively. DSC results showed that both the crystallization temperature (Tc) and melting temperature (Tm) of the composites decreased compared with pure PEEK at random filler content, which suggested that Gd2O3 hindered the process of PEEK nucleation. The tensile modulus of the composites increased with addition of Gd2O3 and the strain to break decreased. But the tensile modulus and strength of modified series were always higher than that of unmodified ones at the same filler content. The X‐ray shielding properties of composites apparently improved with the increment of the Gd2O3. The X‐ray transmittance (A) of 45% S4GPEEK reduced greatly by about three to eight times compared with PEEKs in all energy range measured. POLYM. COMPOS., 36:651–659, 2015. © 2014 Society of Plastics Engineers  相似文献   

18.
A water-soluble sulfonated poly (ether ether ketone) (SPEEK) sizing agent is prepared and applied to improve the interfacial adhesion of carbon fiber/poly (ether ether ketone) (CF/PEEK) composites. The surface morphology, surface roughness, surface chemistries, and surface free energy of SPEEK sized CF are obtained to understand the sizing effect. The results reveal the increased surface free energy and surface roughness of SPEEK sized CF. In addition, a chemical reaction between the CF surface and sizing layer is proved based on the results of XPS, IR, and 1H NMR. The interfacial structure of CF/PEEK composites is further ascertained by AFM and the appearance of gradient interface could be verified for SPEEK sized CF/PEEK composites. The formation of the gradient interface is due to the chemical reaction between the CF and sizing agent as well as the improved compatibility between the sized CF and matrix, which benefits the improvement of interfacial adhesion.  相似文献   

19.
The carbon fiber/(carbon nanotubes/polyetherimide)/poly ether ether ketone (CF/(CNTs/PEI)/PEEK) laminates are prepared by inserting carbon nanotubes/polyetherimide (CNTs/PEI) interleaves into interlaminar region. The mechanical properties and electrical conductivities of the developed laminates are evaluated. The results indicate that the interlaminar shear strength and flexural strength of CF/(CNTs/PEI)/PEEK laminates are increased by 42.9% and 24.7%, after inserting CNTs2.91/PEI interleaves, respectively. The cross-sectional images of laminates after mechanical tests verify strong fiber-resin adhesion by scanning electron microscope observation. The pertinent mechanism responsible for the improvement of mechanical properties is mechanical interlocking effect of CNTs. After incorporating CNTs/PEI interleaves, the electrical conductivity of laminates is markedly improved due to the formation of conductive pathway. This work suggests that this method is compatible with the preparation process of thermoplastic composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48658.  相似文献   

20.
The influence of the compounding route of polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM)/nano‐CaCO3 composites on their properties, including their mechanical properties, the dispersion degree of nano‐CaCO3, and the morphology of EPDM, was studied. The results showed that the toughness of the composites and the morphology of the EPDM particles were markedly influenced by the compounding route, whereas the dispersion degree of nano‐CaCO3 in the matrix was little influenced by the compounding route. The impact strength of composites prepared by one route was about 60 kJ/m2 with 20 wt % nano‐CaCO3. The results indicated that a sandbag of nano‐CaCO3 embedded in EPDM could effectively improve the toughness of the composites. A sandbag composed of EPDM and nano‐CaCO3 eliminated the deterioration effect of the nano‐CaCO3 agglomerate on the toughness of the composites, whereas the nano‐CaCO3 agglomerate separately dispersed in PP decreased the toughness of the tercomponent composite © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号