首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid‐state dye‐sensitized solar cells rely on effective infiltration of a solid‐state hole‐transporting material into the pores of a nanoporous TiO2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole‐transfer yield from the dye to the hole‐transporting material 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9'‐spirobifluorene (spiro‐OMeTAD) is shown to rise rapidly with higher pore‐filling fractions as the dye‐coated pore surface is increasingly covered with hole‐transporting material. Once a pore‐filling fraction of ≈30% is reached, further increases do not significantly change the hole‐transfer yield. Using simple models of infiltration of spiro‐OMeTAD into the TiO2 porous network, it is shown that this pore‐filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole‐transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole‐transporting material. Comparison of these results with device parameters shows that improvements of the power‐conversion efficiency beyond ≈30% pore filling are not caused by a higher hole‐transfer yield, but by a higher charge‐collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power‐conversion efficiencies with increasing pore‐filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro‐OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore‐filling fraction.  相似文献   

2.
Lead sulfide (PbS) and cadmium sulfide (CdS) quantum dots (QDs) are prepared over mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) process. These QDs are exploited as a sensitizer in solid‐state solar cells with 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as a hole conductor. High‐resolution transmission electron microscopy (TEM) images reveal that PbS QDs of around 3 nm in size are distributed homogeneously over the TiO2 surface and are well separated from each other if prepared under common SILAR deposition conditions. The pore size of the TiO2 films and the deposition medium are found to be very critical in determining the overall performance of the solid‐state QD cells. By incorporating promising inorganic QDs (PbS) and an organic hole conductor spiro‐OMeTAD into the solid‐state cells, it is possible to attain an efficiency of over 1% for PbS‐sensitized solid‐state cells after some optimizations. The optimized deposition cycle of the SILAR process for PbS QDs has also been confirmed by transient spectroscopic studies on the hole generation of spiro‐OMeTAD. In addition, it is established that the PbS QD layer plays a role in mediating the interfacial recombination between the spiro‐OMeTAD+ cation and the TiO2 conduction band electron, and that the lifetime of these species can change by around 2 orders of magnitude by varying the number of SILAR cycles used. When a near infrared (NIR)‐absorbing zinc carboxyphthalocyanine dye (TT1) is added on top of the PbS‐sensitized electrode to obtain a panchromatic response, two signals from each component are observed, which results in an improved efficiency. In particular, when a CdS‐sensitized electrode is first prepared, and then co‐sensitized with a squarine dye (SQ1), the resulting color change is clearly an addition of each component and the overall efficiencies are also added in a more synergistic way than those in PbS/TT1‐modified cells because of favorable charge‐transfer energetics.  相似文献   

3.
Here, the fabrication of quasi‐solid‐state TiO2/dye/poly(3‐hexylthiophene) (P3HT) solar cells is reported, in which the dyes with oleophilic thienyl groups were employed and ionic liquid (IL), 1‐ethyl‐3‐methylimidazolium (EMIm) containing lithium bis(trifluromethanesulfone)amide (Li‐TFSI) and 4‐tert‐butylpyridine (t‐BP) are assembled with dyed TiO2 surfaces. One of the devices gave a high conversion efficiency of up to 2.70% under 1 sun illumination. The excellent performance is ascribed to successful molecular self‐organization at interface of the dye molecules and P3HT, and to the efficient charge separation and diffusion acquired by introduction of the IL coupled with Li‐TFSI and t‐BP.  相似文献   

4.
An investigation of the function of an indolene‐based organic dye, termed D149, incorporated in to solid‐state dye‐sensitized solar cells using 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxypheny‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as the hole transport material is reported. Solar cell performance characteristics are unprecedented under low light levels, with the solar cells delivering up to 70% incident photon‐to‐current efficiency (IPCE) and over 6% power conversion efficiency, as measured under simulated air mass (AM) 1.5 sun light at 1 and 10 mW cm?2. However, a considerable nonlinearity in the photocurrent as intensities approach “full sun” conditions is observed and the devices deliver up to 4.2% power conversion efficiency under simulated sun light of 100 mW cm?2. The influence of dye‐loading upon solar cell operation is investigated and the thin films are probed via photoinduced absorption (PIA) spectroscopy, time‐correlated single‐photon counting (TCSPC), and photoluminescence quantum efficiency (PLQE) measurements in order to deduce the cause for the non ideal solar cell performance. The data suggest that electron transfer from the photoexcited sensitizer into the TiO2 is only between 10 to 50% efficient and that ionization of the photo excited dye via hole transfer directly to spiro‐OMeTAD dominates the charge generation process. A persistent dye bleaching signal is also observed, and assigned to a remarkably high density of electrons “trapped” within the dye phase, equivalent to 1.8 × 1017 cm?3 under full sun illumination. it is believed that this localized space charge build‐up upon the sensitizer is responsible for the non‐linearity of photocurrent with intensity and nonoptimum solar cell performance under full sun conditions.  相似文献   

5.
Two donor‐π‐acceptor (D‐π‐A) dyes are synthesized for application in dye‐sensitized solar cells (DSSC). These D‐π‐A sensitizers use triphenylamine as donor, oligothiophene as both donor and π‐bridge, and benzothiadiazole (BTDA)/cyanoacrylic acid as acceptor that can be anchored to the TiO2 surface. Tuning of the optical and electrochemical properties is observed by the insertion of a phenyl ring between the BTDA and cyanoacrylic acid acceptor units. Density functional theory (DFT) calculations of these sensitizers provide further insight into the molecular geometry and the impact of the additional phenyl group on the photophysical and photovoltaic performance. These dyes are investigated as sensitizers in liquid‐electrolyte‐based dye‐sensitized solar cells. The insertion of an additional phenyl ring shows significant influence on the solar cells' performance leading to an over 6.5 times higher efficiency (η = 8.21%) in DSSCs compared to the sensitizer without phenyl unit (η = 1.24%). Photophysical investigations reveal that the insertion of the phenyl ring blocks the back electron transfer of the charge separated state, thus slowing down recombination processes by over 5 times, while maintaining efficient electron injection from the excited dye into the TiO2‐photoanode.  相似文献   

6.
A solid‐state dye‐sensitized solar cell (ssDSSC) with 7.4% efficiency at 100 mW/cm2 is reported. This efficiency is one of the highest observed for N719 dye. High performance is achieved via a honeycomb‐like, organized mesoporous TiO2 photoanode with dual pores, high porosity, good interconnectivity, and excellent light scattering properties. The TiO2 photoanodes are prepared without any TiCl4 treatment via a one‐step, direct self‐assembly of hydrophilically preformed TiO2 nanocrystals and poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer as a titania source and a structure‐directing agent, respectively. Upon controlling the secondary forces between the polymer/TiO2 hybrid and the solvent by varying the amounts of HCl/H2O mixture or toluene, honeycomb‐like structures are generated to improve light scattering properties. Such multifunctional nanostructures with dual pores provide good pore‐filling of solid polymer electrolyte with large volume, enhanced light harvesting and reduced charge recombination, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analysis.  相似文献   

7.
A novel heteroleptic RuII complex (BTC‐2) employing 5,5′‐(2,2′‐bipyridine‐4,4′‐diyl)‐bis(thiophene‐2‐carboxylic acid) (BTC) as the anchoring group and 4,4′‐ dinonyl‐2,2′‐bipiridyl and two thiocyanates as ligands is prepared. The photovoltaic performance and device stability achieved with this sensitizer are compared to those of the Z‐907 dye, which lacks the thiophene moieties. For thin mesoporous TiO2 films, the devices with BTC‐2 achieve higher power conversion efficiencies than those of Z‐907 but with a double‐layer thicker film the device performance is similar. Using a volatile electrolyte and a double layer 7 + 5 μm mesoporous TiO2 film, BTC‐2 achieves a solar‐to‐electricity conversion efficiency of 9.1% under standard global AM 1.5 sunlight. Using this sensitizer in combination with a low volatile electrolyte, a photovoltaic efficiency of 8.3% is obtained under standard global AM 1.5 sunlight. These devices show excellent stability when subjected to light soaking at 60 °C for 1000 h. Electrochemical impedance spectroscopy and transient photovoltage decay measurements are performed to help understand the changes in the photovoltaic parameters during the aging process. In solid state dye‐sensitized solar cells (DSSCs) using an organic hole‐transporting material (spiro‐MeOTAD, 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene), the BTC‐2 sensitizer exhibits an overall power conversion efficiency of 3.6% under AM 1.5 solar (100 mW cm?2) irradiation.  相似文献   

8.
Two triphenylamine‐based metal‐free organic sensitizers, D35 with a single anchor group and M14 with two anchor groups, have been applied in dye‐sensitized solar cells (DSCs) with a solid hole transporting material or liquid iodide/triiodide based electrolyte. Using the molecular hole conductor 2,2',7,7'‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)9,9'‐spirobifluorene (spiro‐OMeTAD), good overall conversion efficiencies of 4.5% for D35 and 4.4% for M14 were obtained under standard AM 1.5G illumination (100 mW cm?2). Although M14 has a higher molar extinction coefficient (by ~ 60%) and a slightly broader absorption spectrum compared to D35 , the latter performs slightly better due to longer lifetime of electrons in the TiO2, which can be attributed to differences in the molecular structure. In iodide/triiodide electrolyte‐based DSCs, D35 outperforms M14 to a much greater extent, due to a very large increase in electron lifetime. This can be explained by both the greater blocking capability of the D35 monolayer and the smaller degree of interaction of triiodide (iodine) with D35 compared to M14 . The present work gives some insight into how the molecular structure of sensitizer affects the performance in solid‐state and iodide/triiodide‐based DSCs.  相似文献   

9.
Hybrid dye‐sensitized solar cells are typically composed of mesoporous titania (TiO2), light‐harvesting dyes, and organic molecular hole‐transporters. Correctly matching the electronic properties of the materials is critical to ensure efficient device operation. In this study, TiO2 is synthesized in a well‐defined morphological confinement that arises from the self‐assembly of a diblock copolymer—poly(isoprene‐b‐ethylene oxide) (PI‐b‐PEO). The crystallization environment, tuned by the inorganic (TiO2 mass) to organic (polymer) ratio, is shown to be a decisive factor in determining the distribution of sub‐bandgap electronic states and the associated electronic function in solid‐state dye‐sensitized solar cells. Interestingly, the tuning of the sub‐bandgap states does not appear to strongly influence the charge transport and recombination in the devices. However, increasing the depth and breadth of the density of sub‐bandgap states correlates well with an increase in photocurrent generation, suggesting that a high density of these sub‐bandgap states is critical for efficient photo‐induced electron transfer and charge separation.  相似文献   

10.
Pretreatment of H2O2 is performed on titanium (Ti) foil as an efficient photoanode substrate for dye‐sensitized solar cell (DSSC). The H2O2‐treated Ti shows high surface area because of the formation of networked TiO2 nanosheets, which enhances electrical contact between screen‐printed TiO2 nanoparticles and Ti foil. Electron transfer on the photoanode is improved, as identified by reduced charge transfer resistance and improved electron transport properties. Compared with DSSC based on non‐treated Ti photoanode, DSSC with this H2O2‐treated Ti photoanode exhibits remarkable increases in short‐circuit current density (from 8.55 to 14.38 mA/cm2) and energy conversion efficiency (from 4.68 to 7.10%) under AM1.5 back‐side illumination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
An iodine‐free solid‐state dye‐sensitized solar cell (ssDSSC) is reported here, with 6.8% energy conversion efficiency—one of the highest yet reported for N719 dye—as a result of enhanced light harvesting from the increased transmittance of an organized mesoporous TiO2 interfacial layer and the good hole conductivity of the solid‐state‐polymerized material. The organized mesoporous TiO2 (OM‐TiO2) interfacial layer is prepared on large‐area substrates by a sol‐gel process, and is confirmed by scanning electron microscopy (SEM) and grazing incidence small‐angle X‐ray scattering (GISAXS). A 550‐nm‐thick OM‐TiO2 film coated on fluorine‐doped tin oxide (FTO) glass is highly transparent, resulting in transmittance increases of 8 and 4% compared to those of the bare FTO and conventional compact TiO2 film on FTO, respectively. The high cell performance is achieved through careful control of the electrode/hole transport material (HTM) and nanocrystalline TiO2/conductive glass interfaces, which affect the interfacial resistance of the cell. Furthermore, the transparent OM‐TiO2 film, with its high porosity and good connectivity, exhibits improved cell performance due to increased transmittance in the visible light region, decreased interfacial resistance ( Ω ), and enhanced electron lifetime ( τ ). The cell performance also depends on the conductivity of HTMs, which indicates that both highly conductive HTM and the transparent OM‐TiO2 film interface are crucial for obtaining high‐energy conversion efficiencies in I2‐free ssDSSCs.  相似文献   

12.
A cylindrical transparent conductive oxide‐less dye‐sensitized solar cell (DSSC) consisting of glass tube/stainless steel mesh–TiO2–dye/gel electrolytes/Pt‐Ti rod having capability of self‐light trapping is reported. Replacing the glass tube with heat‐shrinkable tube to reduce electrolyte gap and optical loss due to light transmission and reflection led to the enhancement in the power conversion efficiency from 2.61% to 3.91%. Profiling of the current distribution measured by laser beam‐induced current exhibited nearly the same current in the axial and radial directions, suggesting that light reflection on a cylindrical DSSC does not affect the efficiency seriously. Optimized best DSSC in this novel device architecture gave a short‐circuit current density of 11.94 mA/cm2, an open‐circuit voltage of 0.71 V and a fill factor of 0.66 leading to the power conversion efficiency of 5.58% at AM 1.5 under simulated solar irradiation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
High‐efficiency all‐solid‐state dye‐sensitized nanocrystalline solar cells have been fabricated using a poly(ethylene oxide)/poly(vinylidene fluoride) (PEO/PVDF)/TiO2‐nanoparticle polymer redox electrolyte, which yields an overall energy‐conversion efficiency of about 4.8 % under irradiation by white light (65.2 mW cm–2). The introduction of PVDF (which contains the highly electronegative element fluorine) and TiO2 nanoparticles into the PEO electrolyte increases the ionic conductivity (by about two orders of magnitude) and effectively reduces the recombination rate at the interface of the TiO2 and the solid‐state electrolyte, thus enhancing the performance of the solar cell.  相似文献   

14.
Molecularly engineered weakly conjugated hybrid porphyrin systems are presented as efficient sensitizers for solid‐state dye‐sensitized solar cells. By incorporating the quinolizino acridine and triazatruxene based unit as the secondary light‐harvester as well as electron‐donating group at the meso‐position of the porphyrin core, the power conversion efficiencies of 4.5% and 5.1% are demonstrated in the solid‐state devices containing 2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spiro bifluorene as hole transporting material. The photovoltaic performance of the triazatruxene donor based porphyrin sensitizer is better than that of the previously published porphyrin molecules exhibiting strongly conjugated push–pull structure. The effect of molecular structure on the optical and electrochemical properties, the dynamics of charge extraction, as well as the photovoltaic performance are systematically investigated, which offers a new design strategy for further refinement of porphyrin molecules.  相似文献   

15.
An energy‐economical dye‐sensitized solar cell (DSSC) with highly flexible Ti/TiO2 photoanode was developed through a low‐temperature process, using a binder‐free TiO2 paste. Ti foils, coated with the binder‐free TiO2 films were annealed at various temperature. Scanning electron microscopic (SEM) images of the films show uniform, mesoporous and crack‐free surface morphologies as well as interpenetrated TiO2 network. DSSCs with binder‐free TiO2 films annealed at 450, 350, 250 and 120°C show solar‐to‐electricity conversion efficiencies (η) of 4.33, 4.34, 3.72 and 3.40%, respectively, which are comparable to the efficiency of 4.56% obtained by using a paste with binder and annealing it at 450°C; this observation demonstrates the benefits of a binder‐free TiO2 paste for the fabrication of energy‐fugal DSSCs. On the other hand, when organic binder was used in the TiO2 paste for film preparation, a drastic deterioration in the cell performance with decreasing annealing temperature is noticed. Laser‐induced photo‐voltage transient technique is used to estimate the electron lifetime in various Ti/TiO2 films. Electrochemical impedance spectroscopic (EIS) analysis shows that the lower the annealing temperature of the TiO2 coated Ti foil, the larger the charge transfer resistance at the TiO2/dye/electrolyte interface (Rct2). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A simple strategy is presented to determine the pore‐filling fraction of the hole‐conductor 2,2‐7,7‐tetrakis‐N,N‐di‐pmethoxyphenylamine‐9,9‐spirobifluorene (spiro‐OMeTAD) into mesoporous photoanodes in solid‐state dye‐sensitized solar cells (ss‐DSCs). Based on refractive index determination by the film's reflectance spectra and using effective medium approximations the volume fractions of the constituent materials can be extracted, hence the pore‐filling fraction quantified. This non‐destructive method can be used with complete films and does not require detailed model assumptions. Pore‐filling fractions of up to 80% are estimated for optimized solid‐state DSC photoanodes, which is higher than that previously estimated by indirect methods. Additionally, transport and recombination lifetimes as a function of the pore‐filling fraction are determined using photovoltage and photocurrent decay measurements. While extended electron lifetimes are observed with increasing pore‐filling fractions, no trend is found in the transport kinetics. The data suggest that a pore‐filling fraction of greater than 60% is necessary to achieve optimized performance in ss‐DSCs. This degree of pore‐filling is even achieved in 5 μm thick mesoporous photoanodes. It is concluded that pore‐filling is not a limiting factor in the fabrication of “thick” ss‐DSCs with spiro‐OMeTAD as the hole‐conductor.  相似文献   

17.
Succinonitrile (SCN), a solid ion conductor (10−4 to 10−3 S/cm) in solid form at room temperature, is mixed with either 1,2‐dimethyl‐3‐propylimidazoliuum iodide or 1‐butyl‐3‐methyl imidazolium iodide ionic liquids for forming a solid plastic phase electrolyte for use in dye‐sensitised solar cell (DSSC). Cells containing these two electrolytes showed best energy conversion efficiencies of 6.3% and 5.6%, respectively. The commonly used DSSC electrolyte additives inhibit the formation of the SCN plastic phase. However, for the first time, an SCN‐additive (additive = guanidinium thiocyanate) electrolyte composition is reported here, which remains as a solid at room temperatures. By using these new solid electrolytes, a simple and rapid single‐step filling procedure for making solid‐state DSSC is outlined. This process, which reduces the required manufacturing steps from four to one, is most suitable for continuous, high‐throughput, commercial DSSC manufacturing lines. These new electrolytes have been tested under low incident light levels (200 lx) to investigate their suitability for indoor DSSC applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Novel conjugated organic dyes that have N,N‐dimethylaniline (DMA) moieties as the electron donor and a cyanoacetic acid (CAA) moiety as the electron acceptor were developed for use in dye‐sensitized nanocrystalline‐TiO2 solar cells (DSSCs). We attained a maximum solar‐energy‐to‐electricity conversion efficiency (η) of 6.8 % under AM 1.5 irradiation (100 mW cm–2) with a DSSC based on 2‐cyano‐7,7‐bis(4‐dimethylamino‐phenyl)hepta‐2,4,6‐trienoic acid (NKX‐2569): short‐circuit photocurrent density (Jsc) = 12.9 mA cm–2, open‐circuit voltage (Voc) = 0.71 V, and fill factor (ff) = 0.74. The high performance of the solar cells indicated that highly efficient electron injection from the excited dyes to the conduction band of TiO2 occurred. The experimental and calculated Fourier‐transform infrared (FT‐IR) absorption spectra clearly showed that these dyes were adsorbed on the TiO2 surface with the carboxylate coordination form. A molecular‐orbital calculation indicated that the electron distribution moved from the DMA moiety to the CAA moiety by photoexcitation of the dye.  相似文献   

19.
A ruthenium sensitizer (coded C101, NaRu (4,4′‐bis(5‐hexylthiophen‐2‐yl)‐2,2′‐bipyridine) (4‐carboxylic acid‐4′‐caboxylate‐2,2′‐bipyridine) (NCS)2) containing a hexylthiophene‐conjugated bipyridyl group as an ancillary ligand is presented for use in solid‐state dye‐sensitized solar cells (SSDSCs). The high molar‐extinction coefficient of this dye is advantageous compared to the widely used Z907 dye, (NaRu (4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridine) (NCS)2). In combination with an organic hole‐transporting material (spiro‐MeOTAD, 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine) 9, 9′‐spirobifluorene), the C101 sensitizer exhibits an excellent power‐conversion efficiency of 4.5% under AM 1.5 solar (100 mW cm?2) irradiation in a SSDSC. From electronic‐absorption, transient‐photovoltage‐decay, and impedance measurements it is inferred that extending the π‐conjugation of spectator ligands induces an enhanced light harvesting and retards the charge recombination, thus favoring the photovoltaic performance of a SSDSC.  相似文献   

20.
Solid‐state dye‐sensitized solar cells employing a solid organic hole‐transport material (HTM) are currently under intensive investigation, since they offer a number of practical advantages over liquid‐electrolyte junction devices. Of particular importance to the design of such devices is the control of interfacial charge transfer. In this paper, the factors that determine the yield of hole transfer at the dye/HTM interface and its correlation with solid‐state‐cell performance are identified. To this end, a series of novel triarylamine type oligomers, varying in molecular weight and mobility, are studied. Transient absorption spectroscopy is used to determine hole‐transfer yields and pore‐penetration characteristics. No correlation between hole mobility and cell performance is observed. However, it is found that the photocurrent is directly proportional to the hole‐transfer yield. This hole‐transfer yield depends on the extent of pore penetration in the dye‐sensitized film as well as on the thermodynamic driving force ΔGdye–HTM for interfacial charge transfer. Future design of alternative solid‐state HTMs should focus on the optimization of pore‐filling properties and the control of interfacial energetics rather than on increasing material hole mobilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号