首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A new short flow technique combining in situ reaction and rapid solidification has been developed and used to prepare Cu-TiB2 (0.45, 1.6 and 2.5 wt% TiB2) alloys. The effects of in situ reaction conditions, cooling rate and solute concentration on the microstructure change of Cu-TiB2 alloys were systematically investigated and analyzed by modeling. It is shown that the size and distribution of TiB2 particles are strongly dependent on the choice of reactor shape, in situ reaction conditions and solute concentration, specifically, the size and aggregation level of TiB2 particles tend to increase as increasing normal volume percent of TiB2 particles when the same in situ reaction condition is used. Some different in situ reaction mechanisms, based on the microstructure change and TiB2 particle distribution under different conditions, were also established and analyzed, which can be used to quantitatively predict the size of melt micelles needed for synthesizing uniformly distributed TiB2 particles with different sizes in the copper matrix.  相似文献   

2.
The paper describes the influence of 5 wt % titanium diboride (TiB2) particles on the microstructure of an Al‐Cu alloy produced by plaster casting process. The elaboration route leads to a composite material with 1% of in situ TiB2 particles and 4% ex situ of TiB2 particles. The comparison of the reinforced alloy with the corresponding non‐reinforced counterpart makes clear that the presence of TiB2 particles has a large influence in the observed microstructure. The presence of TiB2 particles decreases the grain sizes and the porosity level. It is also found that TiB2 particles play an important role in the precipitation events of Al2Cu precipitates that are formed during solidification at the TiB2/aluminum matrix interfaces.  相似文献   

3.
Abstract

The relationships of diboride phases in Al–Ti(Zr)–B alloys with a variable Ti/B ratio close to the stoichiometry of TiB2 were studied. The formation of diboride solid solutions was confirmed. A grain refinement mechanism is proposed as that diboride particles in the Al–Ti–B master alloys reacting with aluminium upon adding into an aluminium melt and release titanium into the melt through forming a (Ti,Al)B2 solid solution and maintain a thin dynamic Ti rich layer on the surfaces of the (Ti,Al)B2 particles, which nucleates α-Al grains in solidification. The poisoning effect of zirconium on grain refinement of aluminium by Al–Ti–B master alloys is also discussed.  相似文献   

4.
Abstract

Diborides present in Al-Ti-B alloys with a weight ratio TilB < 2.2 are investigated in the arc melted and annealed conditions as well as in the controlled heated and cooled specimens by means of light and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. In Al- Ti-B alloys with composition close to the AlB2-TiB2 tieline; apparently pure spheroidal and platelike TiB2 particles are present. In the as cast condition of all other investigated alloys the formation of AlB2 on primary TiB2 particles is observed regardless of the applied cooling rate. In the investigated alloys apparently pure TiB2 and AlB2 coexist even after 1000 h exposure at 800° C, and the formation of mixed diboride (Al, Ti) B2 was never observed. The results of this work are discussed together with the results of previous work in this area and it seems very likely that the mixed diboride (Al, Ti)B2 is not a thermodynamically stable phase in the aluminium rich corner of the Al-Ti-B system, but onlyapparently pure AlB2 and TiB2 are present.  相似文献   

5.
AZ91D, as one of the most widely used casting magnesium alloys, still suffers from inadequate mechanical performances for various applications. Nanoparticles could be used to form high‐performance magnesium matrix nanocomposites. Among all nanoparticles, TiB2 has great potentials to enhance the mechanical property of AZ91D. This paper studies the microstructures and mechanical property of AZ91D‐TiB2 nanocomposites fabricated through solidification nanoprocessing. TiB2 nanoparticles with a diameter of 25 nm are effectively fed into the AZ91D melt through a newly developed automatic nanoparticle‐feeding system. Ultrasonic cavitation is used to disperse these nanoparticles in AZ91D melt for casting. With 2.7 wt% (about 1.0 vol%) of TiB2 nanoparticles addition, the mechanical property of AZ91D is much enhanced (by 21, 16, and 48% for yield strength, tensile strength, and ductility, respectively). Microstructural analysis with optical microscope, SEM, and S/TEM show that α‐Mg grain and a network of massive brittle intermetallic phase (β‐Mg17Al12) are simultaneously refined and modified. Further study suggests that the enhancement of mechanical properties of AZ91D is attributed not only to primary phase grain refinement, but also to the modification of intermetallic β‐Mg17Al12 by TiB2 nanoparticles.  相似文献   

6.
The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg–Zn–Y and Mg–Zn–Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg–Zn–Y alloys, the co-presence of I and Ca2Mg6Zn3 phases by addition of Ca can significantly enhance formability, while in Mg–Zn–Al alloys, the co-presence of the I-phase and Mg2Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg–Zn–Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg–Zn–Al–Sn alloys is attributed to the presence of finely distributed Mg2Sn and I-phase particles embedded in the α-Mg matrix.  相似文献   

7.
An in situ Al–TiB2 nanocomposite was synthesized by mechanical alloying (MA) of pure Ti, B and Al powder mixture in a planetary ball mill. A double-step process was used to prevent the formation of undesirable phases like Al3Ti intermetallic compound. In the first step, a powder mixture was tailored to obtain nominal Al–90 wt% TiB2 composition and the second step involved the addition of Al to the mixture in order to achieve Al–20 wt% TiB2. The structural and thermal characteristics of powder particles were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM), differential scanning calorimetery (DSC), and transmission electron microscopy (TEM). The results showed that the MA process leads to the in situ formation of nanosized TiB2 particles in an Al matrix with a uniform distribution. It was also found that the double stage addition of aluminum can prevent the formation of undesirable compounds even after annealing at high temperatures.  相似文献   

8.
A new technique has been developed in an aluminum based metal matrix composite in order to reveal the mechanism of formation of TiB2 particles by mixing molten master alloys i.e., Al–8Ti and Al–4B in the Ti:B weight ratio of 5:2. A composite containing fine TiB2 particles produced by this technique. In this approach, the progress of In situ formation of TiB2 was carried out using hot stage microscope, energy dispersive X-ray analysis, scanning electron microscopy and X-ray diffraction analysis. From the experimental observations obtained; it was proposed that the formation of TiB2 particles occurred via diffusion of Boron atoms through TiAl3 particles interface, thereby reacting to form fine TiB2 particles. Studies indicate that since the primary TiB2 particles on the surface of TiAl3 are appreciably free and movable and because of boron diffusion across boundary layer towards TiAl3, TiB2 particles produced during growth with the primary ones formed agglomeration rings. A model was schematically developed to explain the formation of TiB2.  相似文献   

9.
Abstract

In arc melted and aluminothermically prepared alloys with composition in the triangle Al–AlB2–TiB2 four solid phases are observed: α-Al, ρ-AlB12, AlB2, and TiB2. The univariant reaction between L, ρ-AlB12, and TiB2 is the eutectic one L? α-AlB12 + TiB2. During the reaction TiB2 platelets are sequentially formed on facets of α-AlB12, but their formation may be completely suppressed by the presence of primary TiB2. Decomposition of α-AlB12 does not occur on cooling, but only during isothermal annealing under 900°C probably according to the transition reaction L + α-AlB12 → TiB2 + AlB2. Dissolution of α-AlB12 and growth of AlB2 take place in afaceted manner owing to their high entropies of solution. The low temperature AlB2 phase is not formed at all on cooling of concentrated alloys with an overall composition lying on the AlB2-TiB2 tieline, whereas in less concentrated alloys it is usually formed on the primary TiB2 particles in the regions distant from α-AlB12  相似文献   

10.
Abstract

An in situ 5 vol.-% TiB2/2014 composite was prepared by an exothermic reaction of K2TiF6, KBF4 and Al melts. The effect of introduction of in situ formed TiB2 particles on the squeeze-casting formability of the composite was discussed. The microstructural evolution and changes in the mechanical properties of the composite at different squeeze pressures were investigated. The results showed that a pouring temperature of 710°C, a die temperature of 200°C and a squeeze pressure of 90 MPa were found to be sufficient to get the qualified squeeze cast and maximum mechanical properties for an Al 2014 alloy. However, the pouring temperature, die temperature and squeeze pressure need to be increased to 780°C, 250°C and 120 MPa for the composite to get the qualified squeeze cast and maximum mechanical properties as a result of the effect of introduction of in situ formed TiB2 particles on the solidification process, plasticity and fluidity of the composite. The microstructural refinement, elimination of casting defects such as shrinkage porosities and gas porosities and improved distribution of TiB2 particles in the case of the composite result when pressure was applied during solidification. Compared with the gravity-cast composite, the tensile strength, yield strength and elongation of the squeeze-cast composite at 120 MPa increased by 21%, 16% and 200%.  相似文献   

11.
《Composites Part A》2002,33(3):439-444
In situ TiB2 particulate reinforced near eutectic Al–Si alloy composites fabricated by the melt reaction composing (MRC) methods have been investigated. It has been shown that minute TiB2 particles (less than 1 μm) uniformly distribute in the eutectic structure and they are interlaced with the coralline-like eutectic Si, while there are very few TiB2 particles in α-Al. It has been also shown that in situ TiB2 particles can enhance the tensile strength of the Al–Si alloy matrix. The strengthening effect increases with increasing TiB2 content. The ultimate tensile strength (UTS) at room temperature of as-cast 6%TiB2/Al–Si–Mg composite is 296 MPa, that is a 14.7% increase over the matrix, and its elongation at fracture is 5.5%. After heat-treatment (T6), the UTS of the composites reaches 384 MPa. The strengthening mechanism has been discussed.  相似文献   

12.
Solidification and precipitation behaviour of Al-Si-Mg casting alloys   总被引:4,自引:0,他引:4  
The effect of Mg content on the solidification and precipitation behaviour of both unmodified and Sr-modified Al-7Si-Mg casting alloys has been investigated at various solidification rates using cooling curve analysis, differential scanning calorimetry (DSC) and optical and electron microscopy. The Mg concentrations covered the range from 0.3 wt% to 0.7 wt%. The results indicate that increasing Mg content or cooling rate lowers the liquidus and binary Al-Si eutectic transformation temperatures. The latent heat of fusion of these alloys is strongly dependent on the level of Si present, but there is no observed dependence on Mg content. The solidification reactions observed under DSC are identified and it is noticed that the ternary eutectic solidification reaction L Al + Si + Mg2Si is only observed at Mg levels of 0.6% and higher. The minor phases formed on solidification are identified and their response to solution heat treatment is examined. Increasing Mg content usually enhances precipitate hardening. However when Mg levels are increased above 0.5wt%, no apparent increase of yield strength with Mg is observed. This is correlated with dissolved Mg levels and energy released during reprecipitation.  相似文献   

13.
The mechanism of liquid–liquid phase separation and factors determining the solid-state microstructure of monotectic alloys are discussed. The effect of the cooling rate on the phase-separated morphology is shown in examples of Al–In, Al–Pb, Ni–Nb–Y and Zr–Gd–Co–Al alloys solidified by different techniques. A remarkable improvement of the microstructure for the Al91Pb9 hypermonotectic alloy cast with TiB2 particles, which catalyze the phase separation, is demonstrated.  相似文献   

14.
《材料科学技术学报》2019,35(10):2121-2131
The Ti6Al4V-Cu alloy was reported to show good antibacterial properties, which was promising to reduce the hazard of the bacterial infection problem. For the purpose of preparing Ti6Al4V-Cu alloy with satisfied comprehensive properties, it’s important to study the heat treatment and the appropriate Cu content of the alloy. In this study, high Cu content Ti6Al4V-xCu (x = 4.5, 6, 7.5 wt%) alloys were prepared, and firstly the annealing heat treatments were optimized in the α+β+Ti2Cu triple phase region to obtain satisfied tensile mechanical properties. Then the effect of Cu content on the tribological property, corrosion resistance, antibacterial activity and cytotoxicity of the Ti6Al4V-xCu alloys were systematically studied to obtain the appropriate Cu content. The results showed that the optimal annealing temperatures for Ti6Al4V-xCu (x = 4.5, 6, 7.5 wt%) alloys were 720, 740 and 760 °C, respectively, which was resulted from the proper volume fractions of α, β and Ti2Cu phases in the microstructure. The additions of 4.5 wt% and 6 wt% Cu into the medical Ti6Al4V alloy could enhance the wear resistance and corrosion resistance of the alloy, but the addition of 7.5 wt% Cu showed an opposite effect. With the increase of the Cu content, the antibacterial property was enhanced due to the increased volume fraction of Ti2Cu phase in the microstructure, but when the Cu content was increased to 7.5 wt%, cytotoxicity was presented. A medium Cu content of 6 wt%, with annealing temperature of 740 °C make the alloy possesses the best comprehensive properties of tensile properties, wear resistance, corrosion resistance, antibacterial property and biocompatibility, which is promising for future medical applications.  相似文献   

15.
Microstructures of in situ Al/TiB2 MMCs prepared by a casting route   总被引:2,自引:0,他引:2  
In situ Al/TiB2 metal matrix composites (MMCs) have been successfully produced by Salt-Metal reactions. This is a novel low-cost reactive approach, which involves adding Ti and B bearing salts to molten Al. The reactions between the salts lead to the formation of the reinforcing TiB2 particles in the Al matrix. The in situ formed TiB2 particles are very fine (below 1 m in size). Strings and clusters of particle agglomerates are distinct microstructural features of all the composites with pure Al as the matrix. The effects of processing parameters on the kinetics of TiB2 formation and on the final microstructures are studied in detail. Besides, efforts are made to improve the distribution of TiB2 particles in the Al matrix by means of chemical additions; it is found that a homogeneous distribution is obtained by using a eutectic Al-Si alloy as the matrix material.  相似文献   

16.
Abstract

Particles of TiB2 have been introduced into pure AI, AI-Cu, AI-Si, and AI-Ti alloys and their ability to encourage grain refinement has been studied. There was little or no reduction in the grain size in pure Al but the addition of 0.025 wt-%Ti, 1.5 wt-%Cu, or 0.8 wt-%Si enables the TiB2 particles to become potent grain nuclei. When the effect of these alloying additions on the restriction of the crystal growth rate is assessed, it is found that the above Ti, Cu, and Si additions are roughly equivalent. It is concluded that hypoperitectic Ti additions enable TiB2 particles to become effective grain nuclei through crystal growth rate restriction rather than through the formation of a TiAI3 layer on the particle surfaces.  相似文献   

17.
Abstract

The roles of CeO2 additive during preparation of in situ TiB2/Al composite, alleviating particle settlement in composite melt and significantly improving particle dispersion in final microstructure, are studied in this paper. It is evidenced that the CeO2 additive reacts with Al melts to release Ce solute into the melts, and the released surface active Ce is absorbed in the Al/TiB2 interfaces without any other reaction products. First principles calculations show that the interfacial energy of Al/TiB2 interfaces is reduced owing to the presence of Ce in Al/TiB2 interfacial area. Therefore, the wettability of molten Al on TiB2 surface is increased and the dispersion of TiB2 particles in Al matrix is eventually improved.  相似文献   

18.
Explosive shock-compression processing is used to fabricate Ti3Al and TiAl composites reinforced with TiB2. The reinforcement ceramic phase is either added as TiB2 particulates or as an elemental mixture of Ti + B or both TiB2 + Ti + B. In the case of fine TiB2 particulates added to TiAl and Ti3Al powders, the shock energy is localized at the fine particles, which undergo extensive plastic deformation thereby assisting in bonding the coarse aluminide powders. With the addition of elemental titanium and boron powder mixtures, the passage of the shock wave triggers an exothermic combustion reaction between titanium and boron. The resulting ceramic-based reaction product provides a chemically compatible binder phase, and the heat generated assists in the consolidation process. In these composites the reinforcement phase has a microhardness value significantly greater than that of the intermetallic matrix. Furthermore, no obvious interface reaction is observed between the intermetallic matrix and the ceramic reinforcement.  相似文献   

19.
Abstract

Vacuum diffusion bonding of TiB2 cermet to TiAl based alloys was carried out at 1123 – 1323 K for 0.6 – 3.6 ks under 80 MPa. The microstructural analyses indicate that a compound Ti(Cu, Al)2 is formed in the interface of the TiB2 /TiAl joints, and the width and quantity of the Ti(Cu, Al)2 compound increase with the increase of the bonding temperature and bonding time. The experimental results show that the shear strength of the diffusion bonded TiB2 /TiAl joint is 103 MPa, when TiB2 cermet is bonded to TiAl based alloy at 1223 K for 1.8 ks under 80 MPa.  相似文献   

20.
Abstract

Aluminium alloys containing additions of iron and cerium are among the alloys being developed as potential replacements for titanium based alloys for moderately high temperature applications. Development of these alloys is possible using rapid solidification technology, which results in a very fine distribution of dispersoids in the aluminium matrix. The microstructures of two rapidly solidified high temperature alloy powders of composition (wt-%) Al–6·7Fe–5·9Ce (alloy A) and Al–6·2Fe–5·9Ce–1·63Si (alloy B) have been characterised using transmission electron microscopy and the results are explained on the basis of some of the major solidification parameters, such as nucleation undercooling and recalescence. It was observed that most of the powder particles in the +10 to ?20 μm size range contained both microcellular and cellular regions, which could be explained in terms of an initial large undercooling followed by recalescence. The decomposition of the powder microstructure after exposing the powders to temperatures of 350, 420, and 500°C for 1 h was investigated using transmission electron microscopy. This work was complemented by phase identification studies using X-ray diffraction. The equilibrium precipitates Al13Fe4, Al8Fe2Si, and Al3FeSi were detected in the powder microstructure of alloy B, whereas Al13Fe4 precipitates were detected in alloy A after high temperature exposure (500°C).

MST/1571  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号