首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the fault detection (FD) problem of nonlinear networked control systems (NCSs) is investigated. A nonlinear stochastic systems model is proposed to account for the NCSs with network‐induced random packet dropout and non‐uniformly distributed time‐varying delay in both from sensor to controller and from controller to actuator. On the basis of the new model, by employing FD filter as residual generator, the addressed FD problem is converted into auxiliary nonlinear H filtering problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired FD filter is constructed in terms of certain linear matrix inequalities, which depends on not only nonlinear level but also delay interval occurrence rate and successful joint packet transmission rate. Especially, a trade‐off phenomenon among maximum allowable delay bound, nonlinear level, and successful joint packet transmission rate is found, which typically resulted from the limited bandwidth of the communication networks. The effectiveness of the proposed methods is demonstrated by simulation examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with the problem of the fault detection (FD) filter design for discrete‐time switched linear systems with mode‐dependent average dwell‐time. The switching law is mode‐dependent and each subsystem has its own average dwell‐time. The FD filters are designed such that the augmented switched systems are asymptotically stable, and the residual signal generated by the filters achieves a weighted l2‐gain for some disturbances and guarantees an H ? performance for the fault. By the aid of multiple Lyapunov functions combined with projection lemma, sufficient conditions for the design of the FD filters are formulated by linear matrix inequalities, furthermore, the filters gains are characterized in terms of the solution of a convex optimization problem. Finally, an application to boost convertor is given to illustrate the effectiveness and the applicability of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the fault detection problem is investigated for a class of discrete‐time switched singular systems with time‐varying state delays. The residual generator is firstly constructed based on a switched filter, and the design of fault detection filter is formulated as an H filtering problem, that is, minimizing the error between residual and fault in the H sense. Then, by constructing an appropriate decay‐rate‐dependent piecewise Lyapunov function and using the average dwell time scheme, a sufficient condition for the residual system to be regular, causal, and exponential stable while satisfying a prescribed H performance is derived in terms of linear matrix inequalities (LMIs). The corresponding solvability condition for the desired fault detection filters is also established via LMI approach. Finally, a numerical example is presented to show the effectiveness of the developed theoretical results.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the problem of fault detection for networked control systems under simultaneous consideration of time‐varying sampling periods and packet dropouts. By taking time‐varying sampling periods into consideration, a new closed‐loop model for the considered networked control systems is established. The sampling period switching‐based approach and the parameter uncertainty‐based approach are adopted to deal with time‐varying sampling periods. Based on the established model, the observer‐based fault detection filter design criteria are proposed to asymptotically stabilize the residual system in the sense of mean‐square. The designed observer‐based fault detection filter can guarantee the sensitivity of the residual signal to faults. The simulation results illustrate the effectiveness of the obtain results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the weighted fusion robust steady-state Kalman filtering problem is studied for a class of multisensor networked systems with mixed uncertainties. The uncertainties include same multiplicative noises in system parameter matrices, uncertain noise variances, as well as the one-step random delay and inconsecutive packet dropouts, which modeled by sequences of Bernoulli variables with different probabilities. By defining a new observation vector and applying the augmented method, the system under study is converted into one with only uncertain noise variances. The sufficient conditions for the existence of steady-state estimators are given. According to the minimax robust estimation principle, based on the worst-case subsystems with conservative upper bounds of uncertain noise variances, the robust local steady-state Kalman estimators (predictor, filter, and smoother) are proposed. Applying the optimal fusion algorithm weighted by matrices and the covariance intersection fusion algorithm, the two kinds of robust fusion steady-state Kalman estimators are derived in a unified framework. The robustness of the proposed fusion estimators is proved by applying the permutation matrices and the global Lyapunov equations method, such that, for all admissible uncertainties, the actual steady-state estimation error variances of the estimators are guaranteed to have the corresponding minimal upper bounds. The accuracy relations among the robust local and fusion steady-state Kalman estimators are proved. An example with application to autoregressive moving average signal processing is proposed, which shows that the robust local and fusion signal estimation problems can be solved by the state estimation problems. Simulation example verifies the effectiveness and correctness of the proposed results.  相似文献   

6.
In this paper, an observer‐based fault detection (FD) method is presented for a class of nonlinear networked control systems (NCSs) with Markov transfer delays. Firstly, based on Euler approximate method, a nonlinear NCS model with uncertainty is proposed using the Takagi‐Sugeno (T‐S) fuzzy model. Some geometric conditions are given to transfer the NCS model into an output‐feedback form. Then, the H FD observer is designed such that the estimation error (residual) converges to zero, if there exist no fault and uncertainty in the system, or the residual is minimized in the sense of H norm, when system contains fault and uncertainties. Furthermore, to simplify the model, the approximate model without uncertainty is considered. Then, sufficient conditions for the existence of FD observer gain and the sampling time of NCSs are given to achieve the semiglobal practical property. An inverted pendulum example is used to illustrate the efficiency of the developed techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the adaptive quasi‐passification‐based stabilization problem for a class of switched nonlinearly parameterized systems via average dwell time method. First, when all the subsystems have any same relative degree, the global practical stability is achieved by combining the recursive feedback quasi‐passification design technique with a switched adaptive control technique. The states and parameter estimation errors converge to the ball whose sizes can be reduced by choosing appropriate design parameters. Second, when the system states are unavailable for measurements, adaptive output feedback controllers are designed to stabilize the system using quasi‐passivity. The proposed output feedback controllers do not depend on any state observer. Finally, three examples show the effectiveness of the proposed methods.  相似文献   

8.
This paper presents an adaptive fuzzy control approach of multiple‐input–multiple‐output (MIMO) switched uncertain systems, which involve time‐varying full state constraints (TFSCs) and unknown disturbances. In the design procedure, the fuzzy logic systems are adopted to approximate the unknown functions in the systems. The adaptive fuzzy controller is set up by backstepping technique. According to the tangent barrier Lyapunov function (BLF‐Tan), a novel adaptive MIMO switched nonlinear control algorithm is designed. Under the rule of arbitrary switchings and the proposed control laws, it is demonstrated that all signals in the resulted system are semiglobally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of zero with TFSCs. Furthermore, the simulation example validates the effectiveness of presented control strategy.  相似文献   

9.
In this paper, the problem of adaptive neural control is discussed for a class of strict‐feedback time‐varying delays nonlinear systems with full‐state constraints and unmodeled dynamics, as well as distributed time‐varying delays. The considered nonlinear system with full‐state constraints is transformed into a nonlinear system without state constraints by introducing a one‐to‐one asymmetric nonlinear mapping. Based on modified backstepping design and using radial basis function neural networks to approximate the unknown smooth nonlinear function and using a dynamic signal to handle dynamic uncertainties, a novel adaptive backstepping control is developed for the transformed system without state constraints. The uncertain terms produced by state time delays and distributed time delays are compensated for by constructing appropriate Lyapunov‐Krasovskii functionals. All signals in the closed‐loop system are proved to be semiglobally uniformly ultimately bounded. A numerical example is provided to illustrate the effectiveness of the proposed design scheme.  相似文献   

10.
This paper considers the design of reduced‐order state observers for fractional‐order time‐delay systems with Lipschitz nonlinearities and unknown inputs. By using the Razumikhin stability theorem and a recent result on the Caputo fractional derivative of a quadratic function, a sufficient condition for the asymptotic stability of the observer error dynamic system is presented. The stability condition is obtained in terms of linear matrix inequalities, which can be effectively solved by using existing convex algorithms. Numerical examples and simulation results are given to illustrate the effectiveness of the proposed design approach.  相似文献   

11.
In this paper, the fault detection problem is studied for a class of discrete‐time networked systems with multiple state delays and unknown input. A new measurement model is proposed to account for both the random measurement delays and the stochastic data missing (package dropout) phenomenon, which are typically resulted from the limited capacity of the communication networks. At any time point, one of the following cases (random events) occurs: measurement missing case, no time‐delay case, one‐step delay case, two‐step delay case, …, q‐step delay case. The probabilistic switching between different cases is assumed to obey a homogeneous Markovian chain. We aim to design a fault detection filter such that, for all unknown input and incomplete measurements, the error between the residual and weighted faults is made as small as possible. The addressed fault detection problem is first converted into an auxiliary H filtering problem for a certain Markovian jumping system (MJS). Then, with the help of the bounded real lemma of MJSs, a sufficient condition for the existence of the desired fault detection filter is established in terms of a set of linear matrix inequalities (LMIs). A simulation example is provided to illustrate the effectiveness and applicability of the proposed techniques. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the global adaptive finite‐time stabilization of a class of switched nonlinear systems, whose subsystems are all in p (p≤1) normal form with unknown control coefficients and parametric uncertainties. The restrictions on the power orders and the nonlinear perturbations are relaxed. By using the parameter separation technique, the uncertain parameters are separated from nonlinear functions. A systematic design procedure for a common state feedback controller and a switching adaptive law is presented by employing the backstepping methodology. It is proved that the closed‐loop system is finite‐time stable under arbitrary switching by utilizing the common Lyapunov function. Finally, with the application to finite‐time control of chemical reactor systems, the effectiveness of the proposed method is demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper the output tracking control problem for a class of non‐linear time delay systems with some unknown constant parameters is addressed. Such a problem is solved in the case that the non‐linear time‐delay system has full delay relative degree and stable internal dynamics. It is supposed moreover that the output and its time derivatives until n?1, where n is the length of the state vector (euclidean part), do not depend explicitly on the unknown parameters. This work is the first step towards the application of the methodologies of adaptive control for non‐linear delayless systems, based on tools of differential geometry, to non‐linear time‐delay systems too. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
This paper focuses on the problem of active fault‐tolerant control for switched systems with time delay. By utilizing the fault diagnosis observer, an adaptive fault estimate algorithm is proposed, which can estimate the fault signal fast and exactly. Meanwhile, a delay‐dependent criterion is obtained with the purpose of reducing the conservatism of the adaptive observer design. Based on the fault estimation information, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of linear matrix inequality, sufficient conditions are derived for the existence of the adaptive observer and fault‐tolerant controller. Finally, a numerical example is included to illustrate the efficiency of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a neural‐network‐based finite‐time H control design technique for a class of extended Markov jump nonlinear systems. The considered stochastic character is described by a Markov process, but with only partially known transition jump rates. The sufficient conditions for the existence of the desired controller are derived in terms of linear matrix inequalities such that the closed‐loop system trajectory stays within a prescribed bound in a fixed time interval and has a guaranteed H noise attenuation performance for all admissible uncertainties and approximation errors of the neural networks. A numerical example is used to illustrate the effectiveness of the developed theoretic results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The sliding mode control method has been extensively employed to stabilize time delay systems with nonlinear perturbations. Although the resulting closed‐loop systems have good transient and steady‐state performances, the designed controllers are dependent on the time delays. But one knows that it is difficult to obtain the precise delay time in practical systems, especially when it is time varying. In this paper, we revisit the problem and use the backstepping method to construct the state feedback controller. First, a coordinate transformation is used to obtain a cascade time delay system. Then, a linear virtual control law is designed for the first subsystem. The memoryless controller is further constructed based on adaptive method for the second subsystem with the uncertainties bounded by linear function. By choosing new Lyapunov–Krasovskii functional, we show that the system state converges to zero asymptotically. Via the proposed approach, we also discuss the case that the uncertainties are bounded by nonlinear functions. Finally, simulations are done to verify the effectiveness of the main results obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we address the problem of designing robust thresholds for fault detection in discrete‐time nonlinear uncertain systems in the presence of process disturbances. Both constant and dynamic thresholds are proposed. For the computation of constant thresholds, a generalized framework based on signal norms is developed. Different kinds of constant thresholds are studied in the framework proposed. Using linear matrix inequalities (LMI) techniques, algorithms are derived for the computation of these thresholds. Similarly, the dynamic threshold is designed by deriving an inequality on the upper bound of the modulus of the residual signal. This inequality is based on the solution of discrete‐time nonlinear uncertain systems. The simulation examples illustrate that false alarms are successfully eliminated using the proposed thresholds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the problem of continuous and discrete state estimation for a class of linear switched systems with additive faults is studied. The class of systems under study can contain non‐minimum phase zeroes in some of their ‘operating modes’. The conditions for exact reconstruction of the discrete state are given using structural properties of the switched system. The state space is decomposed into the strongly observable part, the non‐strongly observable part, and the unobservable part, to analyze the effect of the unknown inputs. State observers based on high‐order sliding mode to exactly estimate the strongly observable part and Luenberger‐like observers to estimate the remaining parts are proposed. For the case when the exact estimation of the state cannot be achieved, the ultimate bounds on the estimation errors are provided. The proposed strategy includes a high‐order sliding‐mode‐based fault detection and a fault identification scheme via the solution of a Volterra integral equation. The feasibility of the proposed method is illustrated by simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper addresses the issue of fault estimation and accommodation for a discrete‐time switched system with actuator faults. Here, we assume that the sojourn probabilities are known a priori. By using the reduced‐order observer method, the sojourn probability approach, and the Lyapunov technique, a fault estimation algorithm is obtained for the considered system. The main objective of this work is to design a dynamic output feedback fault‐tolerant controller based on the obtained fault estimation information such that the closed‐loop discrete‐time switched system with available sojourn probabilities is robustly mean‐square stable and satisfies a prescribed mixed and passivity disturbance attenuation level in the presence of actuator faults. More precisely, a dynamic output feedback fault‐tolerant controller is established in terms of linear matrix inequalities. Finally, numerical examples are provided to illustrate the usefulness and effectiveness of the proposed design technique.  相似文献   

20.
This paper is concerned with robust estimation problem for a class of time‐varying networked systems with uncertain‐variance multiplicative and linearly correlated additive white noises, and packet dropouts. By augmented state method and fictitious noise technique, the original system is converted into one with only uncertain noise variances. According to the minimax robust estimation principle, based on the worst‐case system with conservative upper bounds of uncertain noise variance, the robust time‐varying Kalman estimators (filter, predictor, and smoother) are presented. A unified approach of designing the robust Kalman estimators is presented based on the robust Kalman predictor. Their robustness is proved by the Lyapunov equation approach in the sense that their actual estimation error variances are guaranteed to have the corresponding minimal upper bounds for all admissible uncertainties. Their accuracy relations are proved. The corresponding robust steady‐state Kalman estimators are also presented, and the convergence in a realization between the time‐varying and steady‐state robust Kalman estimators is proved. Finally, a simulation example applied to uninterruptible power system shows the correctness and effectiveness of the proposed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号