首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Hyperbranched polyglycerol‐grafted, magnetic Fe3O4 nanoparticles (HPG‐grafted MNPs) are successfully synthesized by surface‐initiated ring‐opening multibranching polymerization of glycidol. Reactive hydroxyl groups are immobilized on the surface of 6–9 nm Fe3O4 nanoparticles via effective ligand exchange of oleic acid with 6‐hydroxy caproic acid. The surface hydroxyl groups are treated with aluminum isopropoxide to form the nanosized macroinitiators. The successful grafting of HPG onto the nanoparticles is confirmed by infrared and X‐ray photoelectron spectroscopy. The HPG‐grafted MNPs have a uniform hydrodynamic diameter of (24.0 ± 3.0) nm, and are very stable in aqueous solution, as well as in cell culture medium, for months. These nanoparticles have great potential for application as a new magnetic resonance imaging contrast agent, as evidenced by their lack of cytotoxicity towards mammalian cells, low uptake by macrophages, excellent stability in aqueous medium and magnetic fields, and favorable magnetic properties. Furthermore, the possibility of functionalizing the hydroxyl end‐groups of the HPG with cell‐specific targeting ligands will expand the range of applications of these MNPs.  相似文献   

2.
以Fe_2(SO_4)_3·6H_2O,FeSO_4·4H_2O和NH_3·H_2O为原料,采用化学共沉淀法制备Fe_3O_4磁性纳米颗粒,并通过XRD、FTIR、TEM和VSM手段,研究了反应温度对其结构、形貌和磁性能的影响。结果表明:制备的Fe_3O_4磁性纳米颗粒表面包裹了一层有机物质,呈球形,大小均匀,平均粒径在13nm左右,分散性好,饱和磁化强度Ms最大值可达53.38A·m~2·kg~(–1),且反应温度70℃时其磁性能最佳。  相似文献   

3.
Peripheral nerve injury is a common clinical problem bringing heavy burden to patients, due to its high incidence and unsatisfactory treatment. Nerve guidance conduit (NGC) is a promising scaffold for peripheral nerve repair, and bioactive agents are applied for great functional recovery. Melatonin (MLT) and Fe3O4 magnetic nanoparticles (Fe3O4‐MNPs) are proven to inhibit oxidative stress, inflammation, and induce nerve regeneration. Herein, a multilayered composite NGC loaded with MLT and Fe3O4‐MNPs is designed for sequential and sustainable drug release, creating an appropriate microenvironment for nerve regeneration. The composite scaffold shows sufficient mechanical strength and biocompatibility in vitro, and evidently promotes morphological, functional, and electrophysiological recovery of regenerated sciatic nerves in vivo. This work proves that the multilayered conduits show great prospect in the long‐term nerve defects treatment due to easy manufacture and desired efficacy.  相似文献   

4.
Monodispersed water‐soluble and biocompatible ultrasmall magnetic iron oxide nanoparticles (UMIONs, D = 3.3 ± 0.5 nm) generated from a high‐temperature coprecipitation route are successfully used as efficient positive and negative dual contrast agents of magnetic resonance imaging (MRI). Their longitudinal relaxivity at 4.7 T (r1 = 8.3 mM?1 s?1) is larger than that of clinically used T1‐positive agent Gd‐DTPA (r1 = 4.8 mM?1 s?1), and three times that of commercial contrast agent SHU‐555C (r1 = 2.9 mM?1 s?1). The transversal relaxivity (r2 = 35.1 mM?1 s?1) is six times that of Gd‐DTPA (r2 = 5.3 mM?1 s?1), half of SHU‐555C (r2 = 69 mM?1 s?1). The in vivo results show that the liver signal from T1‐weighted MRI is positively enhanced 26%, and then negatively decreased 20% after injection of the iron oxide nanoparticles, which is stronger than those obtained from Gd‐DTPA (<10%) using the same dosage. The kidney signal is positively enhanced up to 35%, similar to that obtained from Gd‐DTPA. Under T2‐weighted conditions, the liver signal is negatively enhanced ?70%, which is significantly higher than that from Gd‐DTPA (?6%). These results demonstrate the great potential of the UMIONs in dual contrast agents, especially as an alternative to Gd‐based positive contrast agents, which have risks of inducing side effects in patients.  相似文献   

5.
For cancer diagnosis, 1H magnetic resonance imaging (MRI) is advantageous in sensitivity but lacks selectivity. Endogenous 19F MRI signal in humans is barely detectable and thus 19F MRI has very high selectivity. A combination of 1H and 19F MRI is ideal for precise tumor imaging but a protease‐controlled strategy of simultaneous T2 1H MRI enhancement and 19F MRI “Turn‐On” has not been reported. Here, used is a click condensation reaction to rationally project a dual‐functional fluorine probe 4‐(trifluoromethyl)benzoic acid (TFMB)‐Arg‐Val‐Arg‐Arg‐Cys(StBu)‐Lys‐CBT ( 1 ), which is further utilized to functionalize Fe3O4 nanoparticle ( IONP ) to achieve IONP@1 . As such, the IONP aggregation can be activated by furin addition, thereby enhancing the T2 1H MRI signal and switching the 19F NMR/MRI signal “On”. Using this strategy, IONP@1 is successfully applied to detect the activity of the furin enzyme with “Turn‐On” 19F NMR/MRI and T2 1H MRI signals are enhanced. Moreover, IONP@1 is also applied for precise dual‐mode (1H and 19F) MR imaging of tumors in zebrafish under 14.1 T. The current approach, therefore, provides a feasible and robust means to reconcile the dilemma between selectivity and sensitivity of conventional MRI probes. More importantly, it is envisioned that, by substituting the TFMB moiety in 1 with a perfluorinated compound, this “smart” method could be of potential use for precise 1H MR and 19F MR imaging of tumor in mouse or in bigger rodents in near future.  相似文献   

6.
7.
Electrochemical nitrogen reduction reaction (NRR) is a promising approach to convert earth‐adundant N2 into highly value‐added NH3. Herein, it is demonstrated that the heterogeneous Au–Fe3O4 nanoparticles (NPs) can be adopted as highly efficient catalysts for NRR. Due to the synergistic effect of the strong N2 fixation ability of Fe3O4 and the charge transfer capability of Au, the Au–Fe3O4 NPs show excellent performance with a high yield (NH3: 21.42 µg mgcat?1 h?1) and a favorable faradaic efficiency (NH3: 10.54%) at ?0.2 V (vs reversible hydrogen electrode), both of which are much better than those of the Au NPs, Fe3O4 NPs, as well as core@shell Au@Fe3O4 NPs. It also exhibits good stability with largely maintained performance after six cycles. The N2 temperature‐programmed desorption, surface valance band spectra, and X‐ray photoelectron spectroscopy collectively confirm that Au–Fe3O4 NPs have a strong adsorption capacity for the reaction species and suitable surface structure for electronic transfer. The theoretical calculations reveal that Fe provides the active site to fix N2 into *N2H while introducing Au optimizes the adsorption of NRR intermediates, making the NRR pathway on Au–Fe3O4 along an energetic‐favorable process and enhancing the NRR.  相似文献   

8.
To achieve the accurate diagnosis of tumor with the magnetic resonance imaging (MRI), nanomaterials‐based contrast agents are developed rapidly. Here, a tumor targeting nanoprobe of c(RGDyK) modified ultrasmall sized iron oxide is reported with high saturation magnetization and high T1‐weighted imaging capability, attributed to a large number of paramagnetic centers on the surface of nanoprobes and rapid water proton exchange rate (inner sphere model), as well as strong superparamagnetism (outer sphere model). These nanoprobes could actively target and gradually accumulate at the tumor site with a time‐dependent T1–T2 contrast enhancement imaging effect. In in vivo MRI experiments, the nanoprobes exhibit the best T1 contrast enhancement at 30 min after intravenous administration, followed by gradually vanishing and generating T2 contrast enhancement with increasing time at tumor site. This is likely due to time‐dependent nanoprobes aggregation in tumor, in good agreement with in vitro experiment where aggregated nanoprobes display larger r2/r1 value (19.1) than that of the dispersed nanoprobes (2.8). This dynamic property is completely different from other T1‐T2 dual‐modal nanoprobes which commonly exhibit the T1‐ and T2‐weighted enhancement effect at the same time. To sum up, these c(RGDyK) modified ultrasmall Fe3O4 nanoprobes have significant potential to improve the diagnostic accuracy and sensitivity in MRI.  相似文献   

9.
10.
Cobalt sulfide materials have attracted enormous interest as low‐cost alternatives to noble‐metal catalysts capable of catalyzing both oxygen reduction and oxygen evolution reactions. Although recent advances have been achieved in the development of various cobalt sulfide composites to expedite their oxygen reduction reaction properties, to improve their poor oxygen evolution reaction (OER) activity is still challenging, which significantly limits their utilization. Here, the synthesis of Fe3O4‐decorated Co9S8 nanoparticles in situ grown on a reduced graphene oxide surface (Fe3O4@Co9S8/rGO) and the use of it as a remarkably active and stable OER catalyst are first reported. Loading of Fe3O4 on cobalt sulfide induces the formation of pure phase Co9S8 and highly improves the catalytic activity for OER. The composite exhibits superior OER performance with a small overpotential of 0.34 V at the current density of 10 mA cm?2 and high stability. It is believed that the electron transfer trend from Fe species to Co9S8 promotes the breaking of the Co–O bond in the stable configuration (Co–O–O superoxo group), attributing to the excellent catalytic activity. This development offers a new and effective cobalt sulfide‐based oxygen evolution electrocatalysts to replace the expensive commercial catalysts such as RuO2 or IrO2.  相似文献   

11.
A “three birds, one stone” strategy is proposed to enhance the performance of hematite photoanode for photoelectrochemical water splitting. One‐pot hybrid microwave synthesis of Ta and Sn codoped Fe2O3@FeTaO4 core–shell nanorods on F:SnO2 substrate achieves three synergetic effects simultaneously: i) core–shell heterojunction formation to alleviate the significant electron–hole recombination; ii) preserved morphology of small‐diameter nanorods to provide a short hole diffusion distance; and iii) Ta and Sn codoping to enhance the electrical conductivity. These effects are not possible with conventional high temperature thermal synthesis in a furnace. As a result, core–shell Fe2O3@FeTaO4 electrode with FeOOH cocatalyst achieves a photocurrent density of 2.86 mA cm?2 at 1.23 VRHE under AM 1.5 G simulated sunlight (100 mW cm?2), which is ≈2.4 times higher than that of bare hematite (1.17 mA cm?2). In addition, the FeOOH/Fe2O3@FeTaO4 electrode exhibits a high surface charge separation efficiency of ≈85% and a modest bulk charge separation efficiency of ≈24%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号