首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we address the conceptual design for the production of hydrogen from switchgrass. The process is modeled as a mixed-integer non linear programming problem (MINLP) for a superstructure embedding two different gasification technologies, direct and indirect, and two reforming modes, partial oxidation or steam reforming, gas cleaning and a water gas shift reactor (WGSR) with membrane separation is used to obtain pure hydrogen. Given the small number of structural alternatives, the problem is solved by constraining the binary variables of the MINLP so as to select each gasifier and reforming mode yielding four NLP's. Next, the energy is integrated, and finally, an economic evaluation is performed. It is shown that indirect gasification with steam reforming is the preferred technology providing higher production yields than the ones reported in the literature for hydrogen from natural gas and at a potentially lower and promising production cost 0.67$/kg.  相似文献   

2.
In this paper we address the integration of a polygeneration system based on biomass with a concentrated solar power facility for the constant production of electricity over a year long. The process is modelled as a superstructure embedding two different gasification technologies, direct and indirect, and two reforming modes, partial oxidation or steam reforming followed by gas cleaning and three alternatives for the syngas use, water gas shift reactor (WGSR) to produce hydrogen, a furnace for thermal energy production and an open Brayton cycle. We couple this system with a concentrated solar plant that uses tower technology, molten salts and a regenerative Rankine cycle. The problem is formulated as a multi-period mixed-integer non linear programming problem (MINLP). The optimal integration involves the use of indirect gasification, steam reforming and a Brayton cycle to produce 340 MW of electricity at 0.073 €/kWh and 97 kt/yr of hydrogen as a credit.  相似文献   

3.
The steam gasification of solid biomass by means of the absorption enhanced reforming process (AER process) yields a high quality product gas with increased hydrogen content. The product gas can be used for a wide range of applications which covers the conventional combined heat and power production as well as the operation of fuel cells, the conversion into liquid fuels or the generation of synthetic natural gas and hydrogen. On the basis of a dual fluidized bed system, steam gasification of biomass is coupled with in situ CO2 absorption to enhance the formation of hydrogen. The reactive bed material (limestone) used in the dual fluidized bed system realizes the continuous CO2 removal by cyclic carbonation of CaO and calcination of CaCO3. Biomass gasification with in situ CO2 absorption has been substantially proven in pilot plant scale of 100 kW fuel input. The present paper outlines the basic principles of steam gasification combined with the AER process the investigations in reactive bed materials, and concentrates further on the first time application of the AER process on industrial scale. The first time application has been carried out within an experimental campaign at a combined heat and power plant of 8 MW fuel input. The results are outlined with regard to the process conditions and achieved product gas composition. Furthermore, the results are compared with standard steam gasification of biomass as well as with application of absorption enhanced reforming process at pilot plant scale.  相似文献   

4.
Biomass gasification experiments on pilot/demo scales have some issues related to the early deactivation of catalysts during the tar removal step. To avoid this problem, a method was developed in a bench‐scale micro activity unit using toluene as tar model compound in order to suppress this effect. The runs were performed with a commercial Pt catalyst supported on Ce‐Zr‐Al, alternating periods of regeneration and reactivation steps with steam, nitrogen, and hydrogen. The toluene steam reforming using operational cycles in order to reach a long‐term run provided useful information for pilot plant studies, mainly reactivation and regeneration procedures. The main concern on tar removal studies by steam reforming is the catalyst deactivation due to the presence of polyaromatic and olefinic compounds on the material pores, which is produced during biomass gasification.  相似文献   

5.
Methane steam reforming is the main hydrogen production method in the industry. The product of methane steam reforming contains H_2, CH_4, CO and CO_2 and is then purified by pressure swing adsorption(PSA) technology. In this study, a layered two-bed PSA process was designed theoretically to purify H_2 from methane steam reforming off gas. The effects of adsorption pressure, adsorption time and purgeto-feed ratio(P/F ratio) on process performance were investigated to design a PSA process with more than99.95% purity and 80% recovery. Since the feed composition of the PSA process changes with the upstream process, the effect of the feed composition on the process performance was discussed as well.The result showed that the increase of CH_4 concentration, which was the weakest adsorbate, would have a negative impact on product purity.  相似文献   

6.
《分离科学与技术》2012,47(6):1338-1364
Abstract

Hydrogen is the energy carrier of the future and could be employed in stationary sources for energy production. Commercial sources of hydrogen are actually operating employing the steam reforming of hydrocarbons, normally methane. Separation of hydrogen from other gases is performed by Pressure Swing Adsorption (PSA) units where recovery of high‐purity hydrogen does not exceed 80%.

In this work we report adsorption equilibrium and kinetics of five pure gases present in off‐gases from steam reforming of methane for hydrogen production (H2, CO2, CH4, CO and N2). Adsorption equilibrium data were collected in activated carbon at 303, 323, and 343 K between 0‐22 bar and was fitted to a Virial isotherm model. Carbon dioxide is the most adsorbed gas followed by methane, carbon monoxide, nitrogen, and hydrogen. This adsorbent is suitable for selective removal of CO2 and CH4. Diffusion of all the gases studied was controlled by micropore resistances. Binary (H2‐CO2) and ternary (H2‐CO2‐CH4) breakthrough curves are also reported to describe the behavior of the mixtures in a fixed‐bed column. With the data reported it is possible to completely design a PSA unit for hydrogen purification from steam reforming natural gas in a wide range of pressures.  相似文献   

7.
OVERVIEW: Efficient conversion of biomass to hydrogen is imperative in order to realize sustainable hydrogen production. Sorption enhanced steam reforming (SESR) is an emerging technology to produce high purity hydrogen directly from biomass‐derived oxygenates, by integrating steam reforming, water‐gas shift and CO2 separation in one‐stage. Factors such as simplicity of the hydrogen production process, flexibility in feedstock, high hydrogen yield and low cost, make the SESR process attractive for biomass conversion to fuels. IMPACT: Recent work has demonstrated that SESR of biomass‐derived oxygenates has greater potential than conventional steam reforming for hydrogen production. The flexibility of SESR processes resides in the diversity of feedstocks, which can be gases (e.g. biogas, syngas from biomass gasification), liquids (e.g. bioethanol, glycerol, sugars or liquid wastes from biomass processing) and solids (e.g. lignocellulosic biomass). SESR can be developed to realize a simple biomass conversion process but with high energy efficiency. APPLICATIONS: Hydrogen production by SESR of biomass‐derived compounds can be integrated into existing oil refineries and bio‐refineries for hydrotreating processing, making the production of gasoline and diesel greener. Moreover, hydrogen from SESR can be directly fed to fuel cells for power generation. Copyright © 2012 Society of Chemical Industry  相似文献   

8.
用于PEMFC的天然气水蒸气制氢系统   总被引:1,自引:0,他引:1       下载免费PDF全文
代磊  李明  胡鸣若 《化工学报》2009,60(Z1):90-94
针对质子交换膜燃料电池(PEMFC)的应用要求,开发了一个包括天然气水蒸气重整、CO变换和变压吸附净化的制氢工艺过程,并着重对重整反应和变压吸附的操作条件进行了实验研究。考察了温度、空速和水碳比对重整反应的影响,得到适宜的工艺操作条件,实验结果表明:温度650℃、水碳比6、空速42h-1时,氢气含量为70.21%,甲烷转化率为77.41%;分析了温度、流速对变压吸附脱除CO效果的影响,结果表明:在0.2MPa、40℃和吸附、脱附时间120s的条件下,产品气中CO浓度接近于1×10-6,经过多次循环后产品气质量稳定,可以连续获得满足80W质子交换膜燃料电池要求的高纯度氢气。  相似文献   

9.
A new concept of combined coal gasification and methane reforming in a single reactor was proposed as an alternative path for syngas production using coal and coalbed methane. Here, the results of this process are summarized. The experimental work was carried out in a fixed‐bed reactor. Methane cracking, CO2/steam reforming of methane over coal char, and the effects of chars made from different types of parent coal on methane conversion were examined. The catalytic effect of coal char on methane cracking and reforming increased with decreasing coalification degree. A synergistic effect was observed in that, while the coal char catalyzed the methane reforming reactions, gasification of the coal char took place simultaneously, which counter‐balanced the deposition of carbon especially for the methane‐steam‐char system.  相似文献   

10.
针对新提出的流化床两段气化制清洁燃气工艺,利用小型流化床两段反应装置进行焦油脱除实验,比较了热裂解和半焦催化重整对焦油脱除的影响。研究发现,半焦对焦油的催化脱除与反应温度、气体在反应器中的停留时间及半焦的比表面积和孔结构密切相关,在实验操作范围内,随反应温度和停留时间的增加,焦油的脱除效率增加,生成更多的有效气体组分。使用半焦的比表面积越大、孔结构越发达,对煤焦油的催化脱除效果越好。与热裂解效果对比,半焦催化重整不仅能有效脱除焦油,提高有效气体组分的含量,且能明显抑制焦油脱除过程中的积炭生成。基于上述分析,适合流化床两段气化工艺的半焦催化脱除焦油条件为操作温度1000℃、气体在半焦床层中停留时间应该在0.9 s以上。  相似文献   

11.
通过对技术改造,采用单塔脱酸脱氨加压汽提技术,塔顶排出酸性气体,侧线汽提出氨去精馏提纯,釜液进行萃取除酚.经过试验分析,优化萃取剂,使脱除酚氨效果显著提高,满足下游入水指标的要求,为国内外鲁奇炉煤气化废水处理开辟了新的技术路线.  相似文献   

12.
戚元勋 《大氮肥》2001,24(6):408-411
巴陵石化分公司装以煤气化工艺取代石脑油蒸汽转化工艺,以低价煤为原料生产合成氨,煤代油改造改变原有合成气压缩机驱动汽轮机高压蒸汽发和系统。该文探讨为合成氨压缩机驱动问题寻求一个经济合理的解决办法。  相似文献   

13.
介绍了以炼厂气为原料来制取氢气的方法,炼厂气经过冷冻法、膜分离法、变压吸附法直接分离出来,精制后通过水蒸气重整工艺和选择性氧化工艺制取氢气,可将两种工艺耦合在一个反应器内制氢。  相似文献   

14.
概述了国内外关于生物油水蒸气重整、裂解气化和超临界水气化以及其模型化合物气化和生物油气化制备合成气的净化等技术的研究进展,指出无论从经济方面还是技术方面,生物质热解油气化制备合成气都优于生物质直接气化制备合成气,但目前这一技术还处于实验室研究阶段。  相似文献   

15.
6.5MPa水煤浆气化反应过程剖析   总被引:4,自引:0,他引:4  
吴韬  赵勇平 《大氮肥》1997,20(5):323-326
针对渭河6.5MPa水煤浆气化装置,从流体流动过程着手,通过分析计算,对影响气化结果的甲烷水蒸汽转化反应、逆变换反应等反应进行讨论。剖析了6.5MPa下水煤浆气化反应过程。  相似文献   

16.
Hydrogen generation and recycle gas separation for coal liquefaction . Just as 40 years ago, low-temperature processes are now again being considered for recycle gas separation in today's large scale coal liquefaction projects. Hydrogen can be generated by gasification of heavy residues and by steam reforming of ethane. Alternatives for recycle gas separation into hydrogen and gas products are butane and methane absorption or low-temperature condensation processes at high or medium pressure. These processes employ several additional absorption and adsorption steps for gas purification. They are proven on a large technical scale, and fulfill the requirements of environmental legislation.  相似文献   

17.
《Catalysis communications》2007,8(11):1697-1701
Gasification of tar by catalytic steam reforming was examined in the gasification process of biomass, such as dried sewage sludge and wood chips. The tar reforming characteristics of the newly-developed Ni/MgO–CaO (based on dolomite) catalyst which was doped with WO3 as a sulfur-resistant promoter, was investigated using a simulated gas containing naphthalene as tar. The result has confirmed that the developed catalyst shows a high naphthalene reforming activity and is stable even in gas containing hydrogen sulfide. The catalyst also exhibited superior resistance to coking as well as sulfur poisoning compared to several commercial steam-reforming catalysts.  相似文献   

18.
In the future, hydrogen will be an important energy carrier and industrial raw material. Catalytic steam reforming of bio-oils is a promising and economically viable technology for hydrogen production. However, during the reforming process, the catalysts are rapidly deactivated due to coke formation and sintering. Thus, maintaining the activity and stability of catalysts is the key issue in this process. Optimized operation conditions could extend the catalyst lifetime by affecting the coke morphology or promoting coke gasification. This article summarizes the recent developments in the field of catalytic steam reforming of bio-oils, focusing on the operation conditions, the properties of the catalysts, and the effects of the catalyst supports. The expected insights into the catalytic steam reforming of bio-oils will provide further guidance for hydrogen production from bio-oils.  相似文献   

19.
冯翔  杨朝合  CHEN De 《化工进展》2022,41(3):1107-1110
作为全球性的优质能源载体,氢的主要生产方式包括碳氢化合物(例如天然气、煤炭和生物质)的热化学过程以及使用电力来源与可再生能源(如风能或太阳能等)的水电解过程。目前的水电解技术在大规模制氢方面经济竞争力亟待提升。本文指出:为了在2060年实现碳中和,迫切需要开发绿氢制备新技术,大力发展可再生制氢和低碳制氢。具有碳捕集、利用和封存的碳氢化合物低碳制氢(蓝色)技术将占重要地位,随后逐步转向可再生制氢(绿色),并有望全面实现零碳制氢,进而对长期低碳化社会的发展至关重要。文章提出我国生物质资源非常丰富,但生物质废弃物制氢的技术成熟度仍然较低,迫切需要开发从生物质中高效生产可再生氢气的新技术,以显著提高氢气产量并降低成本;吸附增强反应代表了一种可用于可持续生产氢的有前景的新技术;氢气的产率和纯度可以通过过程强化得到显著提高,制氢过程的强化可以在多功能反应器中实现,其中重整和/或气化、水煤气变换和CO2移除步骤可将重整/水煤气变换反应催化剂和CO2捕集剂混合而集成到一个反应器中。最后指出:由于该过程潜力巨大,因此应助推耦合气化和吸附增强反应过程从生物质废弃物中生产可再生氢气的工艺过程,以加快推进碳中和进程。  相似文献   

20.
There are abundant resources of heavy hydrocarbons worldwide, and their utilization is becoming more widespread as time progresses. The present paper proposes a process that combines coke gasification and heavy hydrocarbon pyrolysis, producing synthesis gas and light olefins. Simulation studies on the process are carried out by using Aspen Plus. The results show that the temperature of the gasification‐pyrolysis can be controlled by changing the feed rate of O2 and steam. In addition, the coke jam problem can be solved by increasing the gasification‐pyrolysis temperature or residence time. The maximum amount of light olefins can be acquired by controlling the gasification‐pyrolysis residence time. More than 37 wt % heavy hydrocarbons are changed to synthesis gas with more than 15 wt % changed to light olefins in the case studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号