首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Nanocomposites containing a thermoplastic blend and organophilic layered clay (organoclay) were produced by melt compounding. The blend composition was kept constant [polyamide 6 (PA6) 70 wt % + polypropylene (PP) 30 wt %], whereas the organoclay content was varied between 0 and 10 wt %. The mechanical properties of the nanocomposites were determined on injection‐molded specimens in both tensile and flexural loading. Highest strength values were observed at an organoclay content of 4 wt % for the blends. The flexural strength was superior to the tensile one, which was traced to the effect of the molding‐induced skin‐core structure. Increasing organoclay amount resulted in severe material embrittlement reflected in a drop of both strength and strain values. The morphology of the nanocomposites was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersion X‐ray analysis (EDX), and X‐ray diffraction (XRD). It was established that the organoclay is well dispersed (exfoliated) and preferentially embedded in the PA6 phase. Further, the exfoliation degree of the organoclay decreased with increasing organoclay content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 175–189, 2004  相似文献   

2.
Rubber‐toughened polypropylene (PP) nanocomposites containing organophilic layered silicates were prepared by means of melt extrusion at 230 °C using a co‐rotating twin‐screw extruder in order to examine the influence of the organoclay and the addition of PP grafted with maleic anhydride (PPgMAH) as a compatibilizer on the morphological, mechanical and thermal properties. The mechanical properties of rubber‐toughened polypropylene nanocomposites (RTPPNCs) were studied through tensile, flexural and impact tests. Scanning electron microscopy (SEM) was used for investigation of the phase morphology and rubber particles size. X‐ray diffraction (XRD) was employed to characterize the formation of nanocomposites. The thermal properties were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dynamic mechanical properties were examined by using dynamic mechanical analysis (DMA). From the tensile and flexural tests, the optimum loading of organoclay in RTPP was found to be 6 wt%. The optimum loading of PPgMAH, based on the tensile and flexural properties, was also 6 wt%. The increase in the organoclay and PPgMAH content resulted in a severe embrittlement, manifested by a drop in the impact strength and tensile elongation at break. XRD studies revealed that intercalated RTPPNCs had been successfully prepared where the macromolecular PP segments were intercalated into the interlayer space of the organoclay. In addition, the organoclay was dispersed more evenly in the RTPPNC as the PPgMAH content increased. TGA results revealed that the thermal stability of the RTPPNC improved significantly with the addition of a small amount of organoclay. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
The insertion of the aliphatic diamine inside the organoclay will help the dispersion of the clay platelets in the PP/clay nanocomposite due to the reaction between the maleated PP and the diamine. Cloisite®20A was just simply mixed with hexamethylene diamine (HMDA) under shearing condition in Brabender mixer. HMDA group was successfully penetrated into silicate layers. As a result of penetration, d‐spacing of organoclay was increased. Polypropylene/clay nanocomposites were prepared by compounding with maleated PP and amine‐treated clay. From the FTIR spectra, reaction between amine group and maleic‐anhydride group was confirmed. The effect of the organoclay on the properties of the nanocomposite such as the morphology, dynamic mechanical properties, crystal structure and crystallization behavior, glass transition temperature, thermal stability, and tensile properties were investigated and analyzed. Nanocomposites with amine‐treated clays show enhanced properties compared with those with non–amine‐treated clay (Cloisite®20A). From the TEM analysis, nanocomposites with amine‐treated clays shows better dispersibility compared with those with Cloisite®20A alone. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
A series of polypropylene (PP) nanocomposites containing 2, 4, and 6 wt % of an organophilic montmorillonite clay was prepared via direct melt mixing in the presence of maleic anhydride grafted polypropylene (PP‐g‐MAH) as compatibilizing agent. Microstructure characterization was performed by X‐ray diffraction analysis. Nanocomposites exhibited a 15 and 22% enhancement in tensile modulus and impact strength, respectively. The heat deflection temperature of PP nanocomposites was 36°C greater than for pure PP. Thermal and mechanical properties of nanocomposites were compared to properties of traditional PP‐talc and PP‐glass fiber composites. The results showed that the properties of nanocomposites improved compared to ordinary polypropylene composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Poly(methyl methacrylate) (PMMA)/organoclay nanocomposites prepared by melt‐compounding using a co‐rotating twin‐screw extruder were intercalated nanocomposites. Commercially available PMMA resins of various molecular weights were used for comparison. The results showed an optimum compounding temperature for maximum intercalation with balanced shear and diffusion. Higher operating temperature reduced the shear mixing effect, and might have induced early degradation of the organoclay. Lower operating temperature, in contrast, reduced the mobility of the polymer molecules, which not only hampered the intercalation attempts, but also generated high torque in the extrusion. The mechanical behavior of the nanocomposites was studied. The tensile modulus, storage modulus and glass transition temperature of the nanocomposites increased with increasing clay content; however, an associated decrease in strength and strain at break was also observed. The notched impact strength also showed a slight decrease with clay content. Nanocomposites based on the lower molecular weight PMMA yielded more significant improvement in mechanical and thermal properties at the same clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
The effect of the reaction media on clay dispersion and mechanical properties in poly(butylene succinate) (PBS, a biodegradable aliphatic thermoplastic polyester)/organoclay nanocomposites was investigated in this article. The results suggested that the most dispersed structures can be observed for organoclay modified in supercritical carbon dioxide (scCO2), which was used as solvent in the modification of montmorillonite in this study known for its environmentally benign, inexpensive, and nonflammable solvent, high diffusivity like a gas, near‐zero surface tension, low viscosity and density like a liquid, and high‐solvency power tunable by adjusting pressure and then organoclay modified in ethanol, while the least for organoclay was modified in distilled water. The results also confirmed intercalation‐predominate structures were obtained for nanocomposites of PBS with organoclay modified in ethanol, the mixture of intercalated and exfoliated structures for nanocomposites of PBS with organoclay modified in distilled water, but when clay was modified in scCO2, exfoliation‐predominate structures were observed for the nanocomposites. The storage modulus was significantly enhanced below the glass transition temperature, and the glass transition temperature shifted to a higher temperature compared with pure PBS and the maximum for PBS‐based nanocomposite of pretreated grafted montmorillonite via modification with trihexyltetradecylphosphonium chloride in scCO2 (OGMMTc). The mechanical properties including tensile strength and notched impact strength first decreased and then increased, whereas flexural strength and flexural modulus steadily and nearly linearly increased, maximum for PBS/OGMMTc nanocomposite, owing to the strong interaction between matrix and clay, which ultimately led to better overall dispersion. J. VINYL ADDIT. TECHNOL., 22:423–432, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Natural fiber‐reinforced nanocomposites based on polypropylene/nanoclay/banana fibers were fabricated by melt mixing in a twin‐screw extruder followed by compression molding in this current study. Maleic anhydride polypropylene copolymer (MA‐g‐PP) was used as a compatibilizer to increase the compatibility between the PP matrix, clay, and banana fiber to enhance exfoliation of organoclay and dispersion of fibers into the polymer matrix. Variation in mechanical, thermal, and physico‐mechanical properties with the addition of banana fiber into the PP nanocomposites was investigated. It was observed that 3 wt% of nanoclay and 5 wt% of MA‐g‐PP within PP matrix resulted in an increase in tensile and flexural strength by 41.3% and 45.6% as compared with virgin PP. Further, incorporation of 30 wt% banana fiber in PP nanocomposites system increases the tensile and flexural strength to the tune of 27.1% and 15.8%, respectively. The morphology of fiber reinforced PP nanocomposites has been examined by using scanning electron microscopy and transmission electron microscopy. Significant enhancement in the thermal stability of nanocomposites was also observed due to the presence of nanoclay under thermogravimetric analysis. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), conforming the strong interaction between nanoclay/banana fiberand MA‐g‐PP in the fiber‐reinforced nanocomposites systems. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

8.
The microstructure and mechanical properties of polypropylene (PP)/OMMT binary nanocomposites and PP/styrene‐6‐(ethylene‐co‐butylenes)‐6‐styrene triblock copolymer (SEBS)/OMMT ternary nanocomposites were investigated using X‐ray diffraction (XRD), transmission electron microscopy (TEM), and rheology and electromechanical testing machine. The results show that the organoclay layers are mainly intercalated and partially exfoliated in the PP‐based nanocomposites. The additions of SEBS and OMMT have no significant effect on the crystallization behavior of PP. At the same time, it can be concluded that the polymer chains of PP and SEBS have intercalated into the organoclay layers and increase the gallery distance after blending process based on the analytical results from TEM, XRD, and rheology, which result in the form of a percolated nanostructure in the PP‐based nanocomposites. The results of mechanical properties show that SEBS filler greatly improve the notched impact strength of PP, but with the sacrifice of strength and stiffness. OMMT can improve the strength and stiffness of PP and slightly enhance the notched impact strength of PP/PP‐g‐MA. In comparison with neat PP, PP/OMMT, and PP/SEBS binary composites, notched impact toughness of the PP/SEBS/OMMT ternary composites significantly increase. Moreover, the stiffness and strength of PP/SEBS/OMMT ternary nanocomposites are slightly enhanced when compared with neat PP. It is believed that the synergistic effect of both SEBS elastomer and OMMT nanoparticles account for the balanced mechanical performance of the ternary nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Lili Cui 《Polymer》2007,48(6):1632-1640
The compatibilization effects provided by amine functionalized polypropylenes versus those of a maleated polypropylene, PP-g-MA, for forming polypropylene-based nanocomposites were compared. Amine functionalized polypropylenes were prepared by reaction of maleated polypropylene, PP-g-MA, with 1,12-diaminododecane in the melt to form PP-g-NH2 which was subsequently protonated to form PP-g-NH3+. Nanocomposites were prepared by melt processing using a DSM microcompounder (residence time of 10 min) by blending polypropylene and these functionalized materials with sodium montmorillonite, Na-MMT, and with an organoclay. X-ray and transmission electron microscopy plus tensile modulus tests were used to characterize those nanocomposites. Composites based on Na-MMT as the filler showed almost no improvement of tensile modulus compared to the polymer matrix using any of these functionalized polypropylenes, which indicated that almost no exfoliation was achieved. All the compatibilized nanocomposites using an organoclay, based on quaternary ammonium surfactant modified MMT, as the filler had better clay exfoliation compared to the uncompatibilized PP nanocomposites. Binary and ternary nanocomposites using amine functionalized polypropylenes had good clay exfoliation, but no advantage over those using PP-g-MA. The PP-g-MA/organoclay and PP/PP-g-MA/organoclay nanocomposites showed the most substantial improvements in terms of both mechanical properties and clay exfoliation.  相似文献   

10.
Poly(butylene succinate) (PBS)/(ethylene acrylic acid) (EAA)/organoclay nanocomposites were prepared by using the melt intercalation technique. EAA was used as compatibilizer and organoclay was used as inorganic filler. X‐ray diffraction and transmission electron microscopy results indicated the addition of compatibilizer led to a large increase in basal spacing of nanocomposites and better overall dispersion of organoclay in the PBS matrix. However, the basal spacing was found to be invariant as the organoclay content increased. The differential scanning calorimetry analyses revealed that the incorporation of the organoclay and EAA and the variation of organoclay content altered the melting behavior and crystallization properties of PBS. Storage and loss modulus of virgin matrix increased with the incorporation of organoclay and EAA, and a maximum for the nanocomposite with 9 wt% organoclay. Moreover, the glass transition temperatures also increased for the various organoclay‐containing samples. Mechanical properties showed an increase with the incorporation of organoclay and EAA. The 5 wt% organoclay‐filled PBS gave the highest tensile strength and notched Izod impact strength among all the composites. Further increments in organoclay loading reduced the tensile strength and notched impact strength of nanocomposites, which was thought to be the result of agglomeration. However, increments in clay loading enhanced the flexural strength and flexural modulus of nanocomposites, with a maximum at 9 wt% organoclay. J. VINYL ADDIT. TECHNOL., 23:219–227, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
Nanocomposites have been prepared by melt mixing poly(propylene) (PP) and different levels of a premixed montmorillonite‐organoclay masterbatch (PP/clay concentrate). Melt mixing was achieved using a Gelimat, a high‐speed thermokinetic mixer. The Gelimat system is designed to handle difficult compounding and dispersion applications and can achieve mixing, heating, and compounding of products within a minute. Therefore, the thermal history of the compounded polymer is short, which limits degradation. The structure and properties of the nanocomposites prepared with a Gelimat were compared to ones prepared with a twin‐screw extruder. The structure and properties of PP/clay nanocomposites were compared by TEM, X‐ray diffraction, mechanical testing, and rheological analysis. Results indicate that a better dispersion of the clay can be achieved by thermokinetic mixing when compared to extrusion, resulting in better mechanical properties. Calculations, based on simplifying assumptions, showed that the shear rates generated in a Gelimat are at least one order higher than those generally generated in an extruder. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1557–1563, 2005  相似文献   

12.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Polypropylene (PP)‐based nanocomposites containing 4 wt% maleic anhydride grafted PP (PP‐g‐MA) and 2 wt% Cloisite 20A (C20A) were prepared using various processing devices, viz., twin‐screw extruder (TSE), single‐screw extruder (SSE), and SSE with an extensional flow mixer (EFM). Two processing methods were employed: (I) masterbatch (MB) preparation in a TSE (with 10 wt% C20A and clay/compatibilizer ratio of 1:2), followed by dilution in TSE, SSE, or SSE + EFM, to 2 wt% clay loading; (II) single pass, i.e., directly compounding of dry‐blended PP‐g‐MA/clay in TSE, SSE, or SSE + EFM. It has been indicated that the quality of clay dispersion, both at micro‐ and nanolevel, of the nanocomposites depends very much on the operating conditions during processing, such as mixing intensity and residence time, thus affecting the mechanical performance. Besides that the degradation of the organoclay and the matrix is also very sensitive to these parameters. According to results of X‐ray diffraction, field emission gun scanning electron microscopy, transmission electron microscopy, and mechanical tests, the samples prepared with MB had better overall clay dispersion, which resulted in better mechanical properties. The processing equipment used for diluting MB had a marginal influence on clay dispersion and nanocomposite performance. POLYM. ENG. SCI., 47:1447–1458, 2007. © 2007 Society of Plastics Engineers  相似文献   

14.
Nanocomposites of polypropylene impact copolymer and organoclays were prepared using different compatibilizers (polypropylene‐graft‐(maleic anhydride) (PPMA), polyethylene‐graft‐(maleic anhydride) (PEMA) and their mixture) and varying percentages of clay (3 and 6%) in an attempt to obtain balanced mechanical properties. The nanocomposites were prepared by melt compounding and test specimens were prepared by injection molding. Mechanical properties such as tensile, flexural and Izod impact strength are reported. The clay dispersion was investigated using wide‐angle X‐ray diffraction while the phase morphology was characterized using scanning electron microscopy. It is shown that the mechanical properties of the system with mixed PPMA and PEMA compatibilizers showed the best balance of mechanical properties among the nanocomposites explored. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
Nanocomposites of ethylene‐vinyl acetate copolymer (EVAL) with Dellite organoclay were prepared in a laboratory extruder. The extent of intercalation of the nanocomposites was studied by field emission scanning electron microscopy and X‐ray diffraction. It was established that the organoclay is well dispersed and preferentially embedded in the EVAL phase. Further, the intercalation degree of the organoclay decreased with increasing organoclay content. The mechanical properties of the nanocomposites were studied as a function of clay loading and EVAL type. The nanocomposites exhibited enhanced thermal stability as seen in thermogravimetric studies. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

16.
Abstract

Blends of thermoplastic polyurethane (TPU) and polypropylene (PP) are highly incompatible because of large differences in polarities and high interfacial tensions. On one hand, PP is added to TPU to improve TPU's thermal stability, chemical properties, mechanical properties (modulus, strength and hardness) and processing performance and to reduce TPU's cost. On the other hand, TPU is blended with PP to improve PP's properties (e.g. abrasion, flexibility, tear strength, shock absorbing capabilities, impact strength, adhesion and paintability/printability). Earlier works in polyurethane/organoclay nanocomposites, PP/organoclay nanocomposites and TPU/PP blends were studied. In our experimental work, both ester and ether based TPU nanocomposites were prepared by melt blending using 3?wt-% Cloisite 10A (organically modified montmorillonite clay) as the nanoscale reinforcement and blended with PP with/without PP-graft-maleic anhydride as the compatibiliser. Blends of nanoclay filled TPU/PP were evaluated for dynamic mechanical properties such as storage modulus E′, loss modulus E″ and dissipation factor tanδ.  相似文献   

17.
Polypropylene (PP) nanocomposites were prepared by a melting‐compounding process with a montmorillonite (MMT) suspension. In this process, an organically modified MMT was swollen in a polar solvent and blended with molten PP in an extruder; this was followed by solvent removal. The effect of a coswelling agent was also evaluated. The nanocomposites were characterized with X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and scanning electron microscopy. In addition, the mechanical properties of the materials were studied. The nanocomposites prepared with the clay suspension presented a remarkable increase in the impact strength with the maintenance of their flexural modulus. The mechanical properties of the nanocomposites were found to be related to the interaction between PP and the clay. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Hyuk-soo Lee  William R. Rodgers 《Polymer》2005,46(25):11673-11689
The relationship between morphology and the mechanical properties of thermoplastic olefin (TPO) materials that are reinforced with organoclay fillers and prepared by melt processing is reported. Nanocomposites based on blends of polypropylene and elastomer and using an organoclay masterbatch were prepared in a twin-screw extruder. Transmission electron microscopy, atomic force microscopy and wide-angle X-ray scattering were employed to carry out a detailed particle analysis of the morphology of the dispersed clay and elastomer phases for these nanocomposites. The improvement in mechanical properties, e.g. stiffness enhancement as evaluated by stress-strain analysis and impact strength obtained from notched Izod impact tests, were successfully explained in terms of morphological changes induced by the presence of the clay and elastomer particles. Quantitative analyses of TEM micrographs and AFM images revealed a decrease in the aspect ratio of the clay particles and a reduction in the size of elastomer particles with increasing clay content. In addition, WAXD scans indicated a skin-core effect for the injection molded specimens in terms of both polypropylene crystal orientation and clay filler orientation. This information is essential for the understanding of the mechanism of mechanical property enhancement in nanocomposite materials.  相似文献   

19.
The effect of vinyl acetat (VA) on the morphological, thermal stability, and mechanical properties of heterophasic polypropylene–(ethylene‐propylene) copolymer (PP–EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites was studied. Tailored organoclay C20A was selected to enhance the exfoliation of the clay platelets. Depending on the VA content, there were two morphological organoclay populations in the systems. Both populations were directly observed by scanning transmission electron microscopy and measured by wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The content of VA in EVA originated spherical and elongated morphologies in the resultant nanocomposites. High‐VA content led to a better intercalation of the organoclay platelets. Measurement of thermal properties suggested that higher VA decreases thermal stability in samples both with and without organoclay, although nanocomposites had higher thermal stability than samples without clay. The storage modulus increased both with nanoclay and VA content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
A thermotropic liquid crystalline polyester (TLCP) with an alkoxy side-group was synthesized from 2-ethoxyhydroquinone and 2-bromoterephthalic acid. Nanocomposites of TLCP with Cloisite 25A (C25A) as an organoclay were prepared by the melting intercalation method above the melt transition temperature (Tm) of the TLCP. Liquid crystallinity, morphology, and thermo-mechanical behaviors were examined with increasing organoclay content from 0 to 6%. Liquid crystallinity of the C25A/TLCP hybrids was observed when organoclay content was up to 6%. Regardless of the clay content in the hybrids, the C25A in TLCP was highly dispersed in a nanometer scale. The hybrids (0-6% C25A/TLCP) were processed for fiber spinning to examine their tensile properties. Ultimate strength and initial modulus of the TLCP hybrids increased with increasing clay content and the maximum values of the mechanical properties were obtained from the hybrid containing 6% of the organoclay. Thermal, morphological and mechanical properties of the nanocomposites were examined by differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), polarized optical microscope, electron microscopes (SEM and TEM), and capillary rheometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号