首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent years have seen increasing interest in the construction of nanoscopically layered materials involving aqueous‐based sequential assembly of polymers on solid substrates. In the booming research area of layer‐by‐layer (LbL) assembly of oppositely charged polymers, self‐assembly driven by hydrogen bond formation emerges as a powerful technique. Hydrogen‐bonded (HB) LbL materials open new opportunities for LbL films, which are more difficult to produce than their electrostatically assembled counterparts. Specifically, the new properties associated with HB assembly include: 1) the ease of producing films responsive to environmental pH at mild pH values, 2) numerous possibilities for converting HB films into single‐ or two‐component ultrathin hydrogel materials, and 3) the inclusion of polymers with low glass transition temperatures (e.g., poly(ethylene oxide)) within ultrathin films. These properties can lead to new applications for HB LbL films, such as pH‐ and/or temperature‐responsive drug delivery systems, materials with tunable mechanical properties, release films dissolvable under physiological conditions, and proton‐exchange membranes for fuel cells. In this report, we discuss the recent developments in the synthesis of LbL materials based on HB assembly, the study of their structure–property relationships, and the prospective applications of HB LbL constructs in biotechnology and biomedicine.  相似文献   

2.
In this study, amphiphilic Janus‐type polymers were synthesized via ring‐opening metathesis polymerization (ROMP), multiple vicinal diol formation, and grafting of poly(ethylene glycol) monomethyl ether (mPEG). These amphiphilic polymers formed self‐assemblies, which were a mixture of micelles and multimicellar aggregates, in water. By choosing suitable Janus‐type polymers and irradiating an aqueous solution of polymers using a sonicator, either small micelles or large multimicellar aggregates were obtained selectively. Hydrophobic substituents controlled the aggregation–disaggregation behavior, leading to the formation of metastable self‐assemblies by sonication. The formation of self‐assemblies with a uniform size was affected by ultrasonic frequency, rather than power. In vivo optical tumor imaging revealed that the large‐size multimicellar aggregates persisting for a long time in blood circulation slowly accumulated in tumor tissues. In contrast, the tumor site was rapidly, clearly visualized using the small‐size micelles.  相似文献   

3.
Fast and highly efficient enrichment and separation of glycoproteins is essential in many biological applications, but the lack of materials with high capture capacity, fast, and efficient enrichment/separation makes it a challenge. Here, a temperature‐responsive core cross‐linked star (CCS) polymer with boronate affinity is reported for fast and efficient enriching and separating of glycoproteins from biological samples. The temperature‐responsive CCS polymers containing boronic acid in its polymeric arms and poly(N‐isopropyl acrylamide) in its cross‐linked core are prepared using reversible addition‐fragmentation chain transfer polymerization via an “arm‐first” methodology. The soluble boronate polymeric arms of the CCS polymers provide a homogeneous reaction system and facilitate interactions between boronic acid and glycoproteins, which leads to a fast binding/desorption speed and high capture capacity. Maximum binding capacity of the prepared CCS polymer for horseradish peroxidase is determined to be 210 mg g?1, which can be achieved within 20 min. More interestingly, the temperature‐responsive CCS polymers exhibit rapid reversible thermal‐induced volume phase transition by increasing the temperature from 15 to 30 °C, resulting in a facile and convenient sample collection and recovery for the target glycoproteins. Finally, the temperature‐responsive CCS polymer is successfully applied to enrichment of low abundant glycoproteins.  相似文献   

4.
Supramolecular chemistry has provided versatile and affordable solutions for the design of intelligent soft materials, but it cannot be applied in stiff materials. This paper describes a new concept for the design of high‐performance supramolecular thermosets by using the noncovalent cation–π interaction as cross‐linking. These supramolecular thermosets are a class of infusible and insoluble stiff polymers having excellent mechanical properties even at temperatures exceeding 300 °C. The cation–π interaction can be locally and reversibly installed and removed by aqueous treatments at high or low pH, respectively. Local manipulation of cross‐linking confers these thermosets with multiple stimuli‐responsive functions, such as recyclability, healability, adhesion, and nondestructive detection of cross‐linking and mechanical properties.  相似文献   

5.
A reactive oxygen species (ROS)‐sensitive degradable polymer would be a promising material in designing a disease‐responsive system or accelerating degradation of polymers with slow hydrolysis kinetics. Here, a thermogelling poly(ethylene glycol)–polycaprolactone–poly(ethylene glycol) (PEG–PCL–PEG or EG12–CL20–EG12) triblock copolymer with an oxalate group at the middle of the polymer is reported. The polymers form micelles with an average size of 100 nm in water. Thermogelation is observed in a concentration range of 8.0?37.0 wt%. In particular, the aqueous PEG–PCL–PEG triblock copolymer solutions are in a gel state at 37 °C in a concentration range of 25.0–37.0 wt%, whereas the aqueous PEG–PCL diblock copolymer solutions are in a sol state in the same concentration range at 37 °C. Thus, the gel depot could dissolve out once degradation of the triblock copolymers occurs at the oxalate group as confirmed by the in vitro experiment. In vivo gel formation is confirmed by injecting an aqueous PEG–PCL–PEG solution (36.0 wt%) into the subcutaneous layer of rats. The gel completely disappears in 21 d. A model polypeptide drug (cyclosporine A) is released over 21 d from the in situ formed gel. The micelle‐based thermogel of PEG–PCL–PEG with ROS‐triggering degradability is a promising injectable material for biomedical applications.  相似文献   

6.
Functionalized ordered mesoporous silica materials are commonly investigated for applications such as drug release, sensing, and separation processes. Although, various homopolymer functionalized responsive mesopores are reported, little focus has been put on copolymers in mesopores. Mesoporous silica films are functionalized with responsive and orthogonally charged block‐co‐oligomers. Responsive 2‐dimethylamino)ethyl methacrylate)‐block‐2‐(methacryloyloxy)ethyl phosphate (DMAEMA‐b‐MEP) block‐co‐oligomers are introduced into mesoporous films using controlled photoiniferter initiated polymerization. This approach allows a very flexible charge composition design. The obtained block‐co‐oligomer functionalized mesopores show a complex gating behavior indicating a strong interplay between the different blocks emphasizing the strong influence of charge distribution inside mesopores on ionic pore accessibility. For example, in contrast to mesopores functionalized with zwitterionic polymers, DMAEMA‐b‐MEP block‐co‐oligomer functionalized mesopores, containing two oppositely charged blocks, do not show bipolar ion exclusion, demonstrating the influence of the chain architecture on mesopore accessibility. Furthermore, ligand binding–based selective gating is strongly influenced by this chain architecture as demonstrated by an expansion of pore accessibility states for block‐co‐oligomer functionalized mesopores as compared to the individual polyelectrolyte functionalization for calcium induced gating.  相似文献   

7.
Self‐assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self‐assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self‐assemblies made from a water‐soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer‐embedded self‐assembled architectures are investigated by combining small‐angle neutron and X‐ray scattering, coarse‐grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellar‐to‐lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. This study shows promise for enabling more flexibility in processing and utilizing water‐soluble conjugated polymers in aqueous solutions for self‐assembly based fabrication of stimuli‐responsive nanostructures and sensory materials.  相似文献   

8.
The introduction of stimuli‐responsive polymers into the study of organic catalysis leads to the generation of a new kind of polymer‐based stimuli‐responsive recyclable catalytic system. Owing to their reversible switching properties in response to external stimuli, these systems are capable of improving the mass transports of reactants/products in aqueous solution, modulating the chemical reaction rates, and switching the catalytic process on and off. Furthermore, their stimuli‐responsive properties facilitate the separation and recovery of the active catalysts from the reaction mixtures. As a fascinating approach of the controllable catalysis, these stimuli‐responsive catalytic systems including thermoresponsive, pH‐responsive, chemo‐mechano‐chemical, ionic strength‐responsive, and dual‐responsive, are reviewed in terms of their nanoreactors and mechanisms.  相似文献   

9.
Two‐photon polymerization (2‐PP) is a promising new photolithographic technique to fabricate three‐dimensional (3D), micro‐ and nano‐structured tissue engineering scaffolds from photopolymerizable monomers. Although various photo resins are known for the use in 2‐PP, there is currently a need for photo‐curable monomers processable by 2‐PP to generate biocompatible 3D‐structured hydrogel materials for soft or cartilage tissue regeneration. In the present work hydrophilic methacrylate monomers and macromers based on synthetic poly(glycerine) and poly(ethylene glycol) urethanes as well as on the biopolymers dextran and hyaluronan is prepared. The photopolymerization behavior of these substances are investigated and formed hydrogel networks are studied with regard to their mechanical properties, cytocompatibility, and hydrolytic degradation. Based on these examinations simple 3D model structures are fabricated from these photo‐curable monomers and macromers by 2‐PP. It is shown that both the synthetic monomers and the dextran methacrylate macromer are efficient 2‐PP starting materials whereas the hyaluronan methacrylate can be used for 2‐PP only in combination with suitable water‐soluble co‐monomers. No cytotoxic effects are found in preliminary chondrocyte cultivation experiments on 2‐PP‐fabricated scaffolds but initial cell adhesion on the hydrophilic scaffold surfaces is rather low and has to be further improved to apply these structures in tissue engineering.  相似文献   

10.
Organic conducting polymers can be synthesized inside the pores of a track‐etch membrane, and the resulting hollow tubules are shown to have enhanced electrical properties compared to their corresponding bulk materials. The polymerization of monomers (e.g., pyrrole, thiophenes) inside the confined space of these pores, combined with electrostatic interaction, ensures the alignment of the organic polymers on the interior, leading to higher conductivity. The application of these conducting tubes in the development of amperometric glucose sensors is discussed. Due to the special properties of conducting polymers inside a track‐etch membrane, biosensors with a unique electron‐transfer mechanism have been developed.  相似文献   

11.
Interfacial self‐assembly is a powerful organizational force for fabricating functional nanomaterials, including nanocarriers, for imaging and drug delivery. Herein, the interfacial self‐assembly of pH‐responsive metal–phenolic networks (MPNs) on the liquid–liquid interface of oil‐in‐water emulsions is reported. Oleic acid emulsions of 100–250 nm in diameter are generated by ultrasonication, to which poly(ethylene glycol) (PEG)‐based polyphenolic ligands are assembled with simultaneous crosslinking by metal ions, thus forming an interfacial MPN. PEG provides a protective barrier on the emulsion phase and renders the emulsion low fouling. The MPN‐coated emulsions have a similar size and dispersity, but an enhanced stability when compared with the uncoated emulsions, and exhibit a low cell association in vitro, a blood circulation half‐life of ≈50 min in vivo, and are nontoxic to healthy mice. Furthermore, a model anticancer drug, doxorubicin, can be encapsulated within the emulsion phase at a high loading capacity (≈5 fg of doxorubicin per emulsion particle). The MPN coating imparts pH‐responsiveness to the drug‐loaded emulsions, leading to drug release at cell internalization pH and a potent cell cytotoxicity. The results highlight a straightforward strategy for the interfacial nanofabrication of pH‐responsive emulsion–MPN systems with potential use in biomedical applications.  相似文献   

12.
We develop a biomaterial based on protein–polymer conjugates where poly(ethylene glycol) (PEG) polymer chains are covalently linked to multiple thiols on denatured fibrinogen. We hypothesize that conjugation of large diacrylate‐functionalized linear PEG chains to fibrinogen could govern the molecular architecture of the polymer network via a unique protein–polymer interaction. The hypothesis is explored using carefully designed shear rheometry and swelling experiments of the hydrogels and their precursor PEG/fibrinogen conjugate solutions. The physical properties of non‐cross‐linked and UV cross‐linked PEGylated fibrinogen having PEG molecular weights ranging from 10 to 20 kDa are specifically investigated. Attaching multiple hydrophilic, functionalized PEG chains to the denatured fibrinogen solubilizes the denatured protein and enables a rapid free‐radical polymerization cross‐linking reaction in the hydrogel precursor solution. As expected, the conjugated protein‐polymer macromolecular complexes act to mediate the interactions between radicals and unsaturated bonds during the free‐radical polymerization reaction, when compared to control PEG hydrogels. Accordingly, the cross‐linking kinetics and stiffness of the cross‐linked hydrogel are highly influenced by the protein–polymer conjugate architecture and molecular entanglements arising from hydrophobic/hydrophilic interactions and steric hindrances. The proteolytic degradation products of the protein–polymer conjugates proves to be were different from those of the non‐conjugated denatured protein degradation products, indicating that steric hindrances may alter the proteolytic susceptibility of the PEG–protein adduct. A more complete understanding of the molecular complexities associated with this type of protein‐polymer conjugation can help to identify the full potential of a biomaterial that combines the advantages of synthetic polymers and bioactive proteins.  相似文献   

13.
Stimuli‐responsive energy storage devices have emerged for the fast‐growing popularity of intelligent electronics. However, all previously reported stimuli‐responsive energy storage devices have rather low energy densities (<250 Wh kg–1) and single stimuli‐response, which seriously limit their application scopes in intelligent electronics. Herein, a dual‐stimuli‐responsive sodium‐bromine (Na//Br2) battery featuring ultrahigh energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg?1, which outperforms those for the state‐of‐the‐art stimuli‐responsive electrochemical energy storage devices. This work offers a promising approach for designing multi‐stimuli‐responsive and high‐energy rechargeable batteries without sacrificing the electrochemical performance.  相似文献   

14.
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man‐made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli‐responsive materials; these “smart” materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli‐responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self‐regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli‐responsive materials as the basic building blocks.  相似文献   

15.
Dynamic and reconfigurable systems that can sense and react to physical and chemical signals are ubiquitous in nature and are of great interest in diverse areas of science and technology. DNA is a powerful tool for fabricating such smart materials and devices due to its programmable and responsive molecular recognition properties. For the past couple of decades, DNA‐based self‐assembly is actively explored to fabricate various DNA–organic and DNA–inorganic hybrid nanostructures with high‐precision structural control. Building upon past development, researchers have recently begun to design and assemble dynamic nanostructures that can undergo an on‐demand transformation in the structure, properties, and motion in response to various external stimuli. In this Review, recent advances in dynamic DNA nanostructures, focusing on hybrid structures fabricated from DNA‐conjugated molecules, polymers, and nanoparticles, are introduced, and their potential applications and future perspectives are discussed.  相似文献   

16.
17.
Thermal runway constitutes the most pressing safety issue in lithium‐ion batteries and supercapacitors of large‐scale and high‐power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging–discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal‐responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal‐responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal‐responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol–gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal‐responsive polymers toward the prevention of thermal runaway in next‐generation smart electrochemical storage devices.  相似文献   

18.
Fabrication of novel, biocompatible and stimuli‐responsive membranes based on the crosslinking of poly(methacrylic acid‐co‐methyl methacrylate) using polyethylene glycol as a crosslinking agent is accomplished in a two‐stage procedure. Membranes are fabricated by casting and curing of the reactive precursors in different reaction compositions and durations according to a three‐level factorial design‐of‐experiments. The resulting membranes were thoroughly characterized using SEM, FTIR spectroscopy, thermal analysis and swelling experiments. The thermal properties were improved and swelling behavior of the hydrogels assures its stimuli‐responsive nature. MTT‐assay and cytotoxicity evaluations of the fabricated membranes elucidate acceptable biocompatibility profiles.  相似文献   

19.
The immobilization of fluorescent photoinduced electron transfer (PET) switches/sensors into solid state, which usually cannot maintain their identical properties in solution, has remained a big challenge. Herein, a water‐stable anthracene and maleimide appended zirconium‐based‐metal–organic framework (Zr‐MOF; UiO‐68‐An/Ma) is reported. Unlike the regular intramolecular “fluorophore–spacer–receptor” format, the separated immobilization of fluorescent (anthracene) and acceptor (maleimide) groups into the framework of a multivariate MOF can also favor a pseudo‐intramolecular fluorescent PET process, resulting in UiO‐68‐An/Ma with very weak fluorescence. Interestingly, after Diels–Alder reaction or thiol‐ene reaction of maleimide groups, the pseudo‐intramolecular fluorescent PET process in UiO‐68‐An/Ma fails and the solid‐state fluorescence of the crystals is recovered. In addition, UiO‐68‐An/Ma shows an interesting application as solid‐state fluorescent turn‐on sensor for biothiols, with the naked eye response at a low concentration of 50 µmol L?1 within 5 min. This study represents a general strategy to enable the efficient tuning of fluorescent PET switches/sensors in solid state, and considering the fluorescence of the PET‐based MOFs can be restored after addition of analyte/target species, this research will definitely inspire to construct stimuli‐responsive fluorescent MOFs for interesting applications (e.g., logic gate) in future.  相似文献   

20.
The self‐assembly of block copolymers in thin films provides an attractive approach to patterning 5–100 nm structures. Cross‐linking and photopatterning of the self‐assembled block copolymer morphologies provide further opportunities to structure such materials for lithographic applications, and to also enhance the thermal, chemical, or mechanical stability of such nanostructures to achieve robust templates for subsequent fabrication processes. Here, model lamellar‐forming diblock copolymers of polystyrene and poly(methyl methacrylate) with an epoxide functionality are synthesized by atom transfer radical polymerization. We demonstrate that self‐assembly and cross‐linking of the reactive block copolymer materials in thin films can be decoupled into distinct, controlled process steps using solvent annealing and thermal treatment/ultraviolet exposure, respectively. Conventional optical lithography approaches can also be applied to the cross‐linkable block copolymer materials in thin films and enable simultaneous structure formation across scales—micrometer scale patterns achieved by photolithography and nanostructures via self‐assembly of the block copolymer. Such materials and processes are thus shown to be capable of self‐assembling distinct block copolymers (e.g., lamellae of significantly different periodicity) in adjacent regions of a continuous thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号